Geophysical Research Abstracts Vol. 14, EGU2012-5831-3, 2012 EGU General Assembly 2012 © Author(s) 2012

HO_x Budgets during HO_x Comp: a Case Study of HO_x Chemistry under NO_x limited Conditions

Y. F. Elshorbany (1,2,9), J. Kleffmann (1), A. Hofzumahaus (3), R. Kurtenbach (1), P. Wiesen (1), T. Brauers (3), B. Bohn (3), H.-P. Dorn (3), H. Fuchs (3), F. Holland (3), F. Rohrer (3), R. Tillmann (3), R. Wegener (3), A. Wahner (3), Y. Kanaya (4), A. Yoshino (5,10), S. Nishida (5,11), Y. Kajii (5), M. Martinez (6), D. Kubistin (6), H. Harder (6), J. Lelieveld (6), T. Elste (7), C. Plass-Dülmer (7), G. Stange (7), H. Berresheim (7,12), and U. Schurath (8)

(1) Physikalische Chemie, FB C, Bergische Universität Wuppertal, Wuppertal, Germany (yasin.elshorbany@mpic.de), (2) National Research Centre, Cairo, Egypt, (3) Forschungzentrum Jülich, Institut für Energie- und Klimaforschung (IEK-8), 52425 Jülich, Germany, (4) Research Institute for Global Change (formerly FRCGC), Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan, (5) Tokyo Metropolitan University, Department of Applied Chemistry, Tokyo 192-0397, Japan, (6) Max-Plank Institut für Chemie, Atmospheric Chemistry Department, Mainz, Germany, (7) Deutscher Wetterdienst, Meteorologisches Observatorium, Hohenpeissenberg, Germany, (8) Karlsruhe Institute of Technology (KIT), IMK-AAF, 76021 Karlsruhe, Germany, (9) now at: Max-Plank Institute für Chemie, Atmospheric Chemistry Department, Mainz, Germany, (10) now at: Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan, (11) now at: Gifu University, Gifu 501-1193, Japan, (12) now at: School of Physics & Centre for Climate and Air Pollution Studies, National University of Ireland Galway, Galway, Ireland

Recent studies have shown that measured OH under NO_x limited, high isoprene conditions are many times higher than modelled OH. In this study, a detailed analysis of the HO_x radical budgets under low NO_x, rural conditions was performed employing a box model based on the Master Chemical Mechanism (MCMv3.2). The model results were compared with HO_x radical measurements performed during the international HO_xComp campaign carried out in Jülich, Germany during summer, 2005. Two different air masses influenced the measurement site denoted as high NO_x (NO: 1-3 ppbv) and low NO_x (NO: <1 ppbv) periods. Both modelled OH and HO₂ diurnal profiles lay within the measurement range of all HO_x measurement techniques, with correlation slopes between measured and modelled OH and HO2 around unity. Recently discovered interference in HO2 measurements caused by RO2 cross-sensitivity was found to cause a 30 % increase in measured HO₂ during daytime on average. After correction of the measured HO₂ data, the model HO₂ is still in good agreement with the observations at high NO_x, but overpredicts HO2 by a factor of 1.3 to 1.8 at low NOx. In addition, for two different set of measurements, a missing OH source of 3.6 ± 1.6 and 4.9 ± 2.2 ppb h⁻¹ was estimated from the experimental OH budget during the low NO_x period using the corrected HO₂ data. The measured diurnal profile of the HO₂/OH ratio, calculated using the corrected HO₂, is well reproduced by the MCM at high NO_x, but is significantly overestimated at low NO_x. Thus, the cycling between OH and HO_2 is better described by the model at high NO_x than at low NO_x . Therefore, similar comprehensive field measurements accompanied by model studies are urgently needed to investigate HO_x recycling under low NO_x conditions.