

From KTB amphibolite to Bentheim sandstone: the diminishing effect of the intermediate principal stress on faulting and fault angle

B. Haimson and X. Ma

University of Wisconsin, Materials Sci. and Engr. and Geological Engr. Program, Madison, WI, United States
(baimson@wisc.edu)

The introduction of the “true triaxial” testing machine by Mogi (JGR, 1971) and later by Haimson and Chang (JGR, 2000; IJRMMS, 2000) was instrumental in discovering the hitherto largely unrecognized effect of the intermediate principal stress (σ_2) on rock brittle failure (or faulting) and fault angle (angle between fault-normal and direction of the major principal stress σ_1). It was observed that generally for a given σ_3 , the threshold of strain localization and the level of σ_1 at which rock fails ($\sigma_{1,peak}$) rise monotonically with σ_2 beyond the base magnitudes under axisymmetric compression (AC) when $\sigma_2 = \sigma_3$. An inflection point is reached at some σ_2 that defines its maximum $\sigma_{1,peak}$. Further rise in σ_2 leads to a gradually lower $\sigma_{1,peak}$. However, even when σ_2 approaches σ_1 , strength is still somewhat higher than under AC. Similarly, fault angle for a given σ_3 increases with the rise in σ_2 , at least until the maximum $\sigma_{1,peak}$ is reached. These important roles of σ_2 in fault formation and angle are totally neglected by the commonly accepted Mohr-Coulomb theory, which assumes that faulting is a function of only the two extreme principal stresses, and considers fault angle a unique material property.

Our first true triaxial experiments, conducted on two crystalline rocks (under 1% porosity), Westerly granite (Haimson and Chang, IJRMMS, 2000) and KTB amphibolite (Chang and Haimson, JGR, 2000), exhibited a remarkable σ_2 effect. At low σ_3 (for example: 30 MPa), raising σ_2 increased $\sigma_{1,peak}$ in the amphibolite by up to 59% (at $\sigma_2 = 200$ MPa) over its AC magnitude. Similarly, peak $\sigma_{1,peak}$ in the granite at $\sigma_3 = 20$ MPa increased by a maximum of 49% (at $\sigma_2 = 200$ MPa) over its $\sigma_2 = \sigma_3$ level. As σ_3 was raised, the increase in strength dropped steadily, but even at $\sigma_3 = 100$ MPa maximum $\sigma_{1,peak}$ in both rocks increased by 18% to 39% over the base level. The increase in fault angle with the rise in σ_2 reached a maximum of 20° for all levels of σ_3 in the KTB rock. In the granite, fault angle steepened by 10° to 15° as σ_2 rose above σ_3 .

A milder effect of σ_2 on strength and fault angle was observed in a low porosity ($\phi = 7\%$) siltstone, extracted from the TCDP, Taiwan test hole (Oku, et al, GRL, 2007). At low σ_3 (25 MPa), the maximum $\sigma_{1,peak}$ was 28% larger than the AC level, when σ_2 reached 200 MPa. At higher σ_3 (100 MPa), the maximum $\sigma_{1,peak}$, reached at $\sigma_2 = 300$ MPa, was only 12.5% higher than the strength at $\sigma_2 = \sigma_3$. Fault angle increase with σ_2 for the same σ_3 was limited to less than 10°, irrespective of σ_3 level.

Currently, we are studying the true triaxial mechanical behavior of two quartz-rich sandstones. In the Coconino sandstone ($\phi = 17\%$), an even smaller σ_2 effect was observed. $\sigma_{1,peak}$ as a function of σ_2 at $\sigma_3 = 20$ MPa reached a maximum of just 10.5% higher than under AC. At $\sigma_3 = 150$ MPa, $\sigma_{1,peak}$ maximum increase was also about 10%. Fault angle rise with σ_2 for the same σ_3 , was less than 10° at any σ_3 level. By far the smallest σ_2 effect on rock strength and fault angle was found in the high porosity ($\phi = 25\%$) Bentheim sandstone. In this rock at low $\sigma_3 = 30$ MPa, $\sigma_{1,peak}$ reached a maximum of just 4% over its AC magnitude. At higher σ_3 , such as at $\sigma_3 = 150$ MPa, it showed a maximum increase of 8% as σ_2 rose. Average fault angle decreased from about 80° at $\sigma_3 = 0$ MPa, to 48° at $\sigma_3 = 80$ MPa, to near 0° at $\sigma_3 = 150$ MPa (compaction band). For any given σ_3 , however, fault angle rise with σ_2 was limited to less than 10°.

In conclusion, our research shows that the intermediate principal stress affects the resistance to faulting and fault angle in both crystalline and clastic rocks. However, the effect in clastic rocks is less pronounced, and appears to decrease with the rise in porosity.