

Online, high precision analytical method for determination of $\Delta^{17}\text{O}$ in stratospheric CO_2 with the use of CeO_2 isotopic exchange

D. Mrozek and T. Röckmann

Utrecht University, IMAU, Netherlands (dorota.mrozek@gmail.com)

Isotope studies of carbon dioxide (CO_2) play an important role in understanding of the global carbon cycle. In the atmosphere CO_2 is an important greenhouse gas. Stratospheric CO_2 is known to undergo an isotopic exchange reaction with ozone (Yang et all 1991). Therefore, stratosphere CO_2 shows a mass independent fractionation (MIF) which is a deviation in the ^{17}O content from a purely mass-dependent pattern (MDF): for MDF phenomena $\Delta^{17}\text{O} = \delta^{17}\text{O} - 0.52 \delta^{18}\text{O} = 0$, for MIF phenomena $\Delta^{17}\text{O} \neq 0$. The detail mechanism that controls the ^{17}O anomalies in stratospheric CO_2 is not fully understood.

Interest in this field has caused innovations in analytical techniques based on Isotope Rato Mass Spectrometry (IRMS). Our approach was to design an analytical system that allows analysis of ^{17}O on nanomolar quantities of CO_2 suitable for measuring oxygen isotope anomalies in the stratospheric air samples.

The standard continuous flow-IRMS techniques permit measuring small quantities of CO_2 but it is impossible to measure the ^{17}O isotope at mass 45 due to the interference from the much more abundant ^{13}C . Therefore, CO_2 has to be either converted to O_2 or the oxygen it contains must be exchanged with oxygen of known isotopic composition. Based on complete oxygen isotope exchange with CeO_2 at 650°C (Assonov et al. 2001) we have established an online measurement system for $\delta^{17}\text{O}$ in CO_2 . The system allows analysis of ^{17}O on nanomolar quantities of CO_2 with a good reproducibility of 0.08‰ for $\delta^{45}\text{CO}_2$.

The new technique is a valuable tool to study isotopic exchange mechanism between O_3 and CO_2 in the stratosphere. We have determined the isotopic composition of stratospheric CO_2 on air samples obtained during the EU project RECONCILE in the Arctic winter/spring season with the high-altitude aircraft Geophysica.