

Sensitivity of last deglacial and modern Antarctic Ice Sheet to the distribution of basal roughness

D. Pollard (1) and R.M. DeConto (2)

(1) Pennsylvania State University, Earth and Environmental Systems Institute, University Park, Pennsylvania, United States (pollard@essc.psu.edu), (2) University of Massachusetts, Department of Geosciences, Amherst, Massachusetts, United States (deconto@geo.umass.edu)

The distributions of basal roughness and deformable sediment versus hard bedrock underneath Antarctica are poorly known, yet have a large influence on the geometry of the Antarctic Ice Sheet. Most paleoclimatic continental-scale ice-sheet simulations to date have assumed very simple distributions, which probably contribute to the large errors found in modern surface ice elevations. Here a crude inverse method is used to deduce the distribution of basal sliding coefficients, by fitting to modern observed surface elevations in a 3-D hybrid ice sheet-shelf model. Modern errors in ice elevation are considerably reduced, from several hundred meters to a few tens of meters in most areas. However, it is found that the simulated total ice volume at Last Glacial Maximum \sim 15 ka, deglacial retreat history, and contribution to eustatic sea-level rise are quite sensitive to the new sliding-coefficient distribution, and also to the value assumed on continental shelves. Last deglacial results are presented, and model-data comparisons that could reduce the model uncertainty are discussed.