

A Hyperbolic Nonlinear Wave Model Based On The Stream Function Formulation

M. Tian (1), A. Sheremet (1), and J. Smith (2)

(1) Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, USA (mtian04.18@ufl.edu, alex@coastal.ufl.edu), (2) US Army Engineering Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS, USA (Jane.M.Smith@usace.army.mil)

Although virtually all nearshore wave-forecasting models are based on the mild-slope (<0.05) approximation, their applications sometimes involve steep slopes (reefs have slopes >0.2). Following Kirby (1986), theoretical works on the linear steep slope problem resulted in a number of linear formulations (Massel 1993), and nonlinear interaction models (Kaihatu 1995). These models have the problem that across-spectrum coupling requires an adequate description of the low-frequency band, where the mild slope approximation is invalid. An alternative 3-dimensional, “quasi”-stream-function formulation was introduced recently by Kim (2004), which satisfies the mild-slope approximation unconditionally, with an expansion involving triad interaction proposed by Toledo (2009). In this study, we derive a hyperbolic approximation of the Toledo (2009). The stream-function formulation is expanded in the frequency domain using a WKB-type approximation. The resulting phase-resolving triad-interaction model provides a framework for the description of directional waves propagating over arbitrary slopes and reduces to the previous velocity-potential function formulation for mild slopes. Current efforts focus on the development of numerical implementations of the model, and numerical validation, using laboratory data simulating reef waves, and field observations.