Geophysical Research Abstracts Vol. 14, EGU2012-7670-1, 2012 EGU General Assembly 2012 © Author(s) 2012

Using carbon isotope fractionation for an improved quantification of CH4 oxidation efficiency in Arctic peatlands

I. Preuss, C. Knoblauch, J. Gebert, and E.-M. Pfeiffer University of Hamburg, Institute of Soil Science, Germany (Inken.Preuss@uni-hamburg.de)

Much research effort is focused on identifying global CH_4 sources and sinks to estimate their current and potential strength in response to land-use change and global warming. Aerobic CH_4 oxidation is regarded as the key process reducing the strength of CH_4 emissions in wetlands, but is hitherto difficult to quantify.

Recent studies quantify the efficiency of CH_4 oxidation based on CH_4 stable isotope signatures. The approach utilizes the fact that a significant isotope fractionation occurs when CH_4 is oxidized. Moreover, it also considers isotope fractionation by diffusion. For field applications the 'open-system equation' is applied to determine the CH_4 oxidation efficiency:

$$f_{ox} = (\delta_E - \delta_P) / (\alpha_{ox} - \alpha_{trans})$$

where f_{ox} is the fraction of CH₄ oxidized; δ_E is δ^{13} C of emitted CH₄; δ_P is δ^{13} C of produced CH₄; α_{ox} is the isotopic fractionation factor of oxidation; α_{trans} is the isotopic fractionation factor of transport.

We quantified CH₄ oxidation in polygonal tundra soils of Russia's Lena River Delta analyzing depth profiles of CH₄ concentrations and stable isotope signatures. Therefore, both fractionation factors α_{ox} and α_{trans} were determined for three polygon centers with differing water table positions and a polygon rim.

While most previous studies on landfill cover soils have assumed a gas transport dominated by advection (α_{trans} = 1), other CH₄ transport mechanisms as diffusion have to be considered in peatlands and α_{trans} exceeds a value of 1. At our study we determined α_{trans} = 1.013 \pm 0.003 for CH₄ when diffusion is the predominant transport mechanism. Furthermore, results showed that α_{ox} differs widely between sites and horizons (α_{ox} = 1.013 \pm 0.012) and has to be determined for each case.

The impact of both fractionation factors on the quantification of CH_4 oxidation was estimated by considering both the potential diffusion rate at different water contents and potential oxidation rates. Calculations for a water saturated tundra soil indicated a CH_4 oxidation efficiency of 88% in the upper horizon.

Using carbon isotope fractionation improves the *in situ* quantification of CH₄ oxidation in wetlands and thus the assessment of current and potential CH₄ sources and sinks in these ecosystems.