Geophysical Research Abstracts Vol. 14, EGU2012-7836, 2012 EGU General Assembly 2012 © Author(s) 2012



## Spatial and temporal variability of $R_1$ in the Bay of Koper (Gulf of Trieste)

R. Soczka Mandac and B. Bogunović

Harpha sea, d.o.o. Koper, Cevljarska ulica 8, 6000 Koper Slovenia (rok@harphasea.si)

The space and time distribution of the internal Rossby radius of deformation  $(R_1)$  is explored for the Bay of Koper (Bay). The main objective of this study is evaluation of the seasonal thermohaline variation in the Bay on meso-scale processes. While currents along the southern coastline of the Gulf of Trieste are known [1]; the shape of density isolines in the vertical plane of a coastal belt of fresher water in the Bay are not known.

The calculation of  $R_1$  follows the method of vertical modes (the eigenvalue problem), calculated from vertical profiles of buoyancy frequency.  $R_1$  was obtained from numerous field measurements of temperature and salinity (CTD) in 2011. CTD casts were collected forth nightly on a regular 35 sampling points in May and December 2011. Obtained data were processed and spatial interpolated with an Objective Analysis method.

Space distribution of  $R_1$ , calculated from the first vertical mode of seasonal temperature and salinity, reveals that during seasons with a stratified sea (spring-autumn)  $R_1$  increases in an offshore direction. The largest  $R_1$  (15 km) was observed in the port basin at the beginning of June and the smallest  $R_1$  (1 km) in the southern part of the Bay. During early autumn the maximum  $R_1$  (8 km) was observed in the offshore direction (west), while minimum  $R_1$  (1 km) near the southern coastline of the Bay. In the winter season, the maximum  $R_1$ (6 km) was noticed again in offshore direction, while the minimum value (500 m) was in the southern part of the Bay. This seems surprising, since the lowest values are attributed to regions of the highest stratification Badaševica river. However, in linear vertical stratification  $R_1$  is proportional to the product of buoyancy frequency and the depth distribution drastically varies in relation to the fresh water inflow (Badaševica river) while in the winter season the  $R_1$  distribution pattern is related to the bathymetric shape of the bay [2]. Similar distributions of  $R_1$  were found in the Baltic Sea and the Bay of Finland [3].

## References:

- 1. Bogunović B. and Malačič V., 2008. Circulation in the Gulf of Trieste: Measurements and model results. Nuovo Cimento (C), 31, C3, 301-326.
- 2. Fennel W., Seifert T. and Kayser B., 1991. Rossby radii and phase speeds in the Baltic Sea. Cont. Shelf Res., 11: 23-36.
- 3. Pekka A., Nekrasov A. and Myberg K., 2003. Variability of the baroclinic Rossby radius in the Gulf of Finland. Cont. Shelf Res., 23: 563-573.