Geophysical Research Abstracts Vol. 14, EGU2012-8707, 2012 EGU General Assembly 2012 © Author(s) 2012

On the timing of high-pressure metamorphism in Alpine Corsica: the first Lu-Hf garnet and lawsonite ages

A. Vitale Brovarone (1,2,3), D. Herwartz (4,5), D. Castelli (2), and J. Malavieille (1)

(1) Géosciences Montpellier, Université Montpellier 2 - CNRS, Cc 60, Place Eugène Bataillon, 34095 Montpellier, France, (2) Dipartimento di Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, 10125 Torino, Italy, (3) presently at: ISTEP, Université Paris 06-UPMC, UMR UPMC CNRS 7193, 4 place Jussieu, F-75005, Paris, France, (4) Steinmann-Institut, Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany, (5) Universität zu Köln, Institut für Geologie und Mineralogie, Zülpicher Str. 49b, 50674 Köln, Germany

Timing of HP metamorphism in Alpine Corsica is highly debated. Controversial biostratigraphic and radiometric constraints results in a poor understanding of the evolution of Alpine Corsica and its meaning in the Western Mediterranean dynamics. Age estimates provided by means of several techniques (e.g. Ar-Ar, Sa-Nd, U-Pb) vary form Late Cretaceous to Late Eocene. Some authors favor a Late Cretaceous peak metamorphism under HP conditions followed by Late Eocene and Early Oligocene blueschist and greenschist retrogression, respectively. Others favor a Late Eocene peak metamorphism and consider the older estimates as affected by analytical inaccuracy.

In order to unravel this debate, we provide new Lu-Hf constraints on garnet and lawsonite from the lawsonite-eclogite and lawsonite-blueschist units of Alpine Corsica, which represent a part of the so-called Schistes Lustrés complex. The two investigated units are interpreted to represent remnants of the former Corsican ocean-continent transition zone [2]. As Lu concentrates in the cores of the selected minerals during the early stages of growth and blocking temperatures are high, this method provides robust insight on the timing of prograde/peak metamorphism [1]. Garnet and lawsonite separated form three lawsonite-eclogite samples yield systematic Late Eocene ages at \sim 34 Ma, while lawsonite from the lawsonite-blueschist unit yields a slightly older age at \sim 37 Ma. These data are in agreement with U-Pb data on zircon from the lawsonite-eclogite unit (\sim 34 Ma) [3], but are in contrast with a recent U-Pb estimate on the Corsican continental margin unit metamorphosed under blueschist condition, yielding an age of \sim 55 Ma [4]. These discrepancies indicate a complex paleogeographic setting and a diachronous metamorphic evolution along the Corsican ocean-continent transition zone. The Late Eocene HP metamorphism in the Schistes Lustrés of Alpine Corsica also provides important constraints in the evolution of the Alps-Apennine system and the surrounding Western Mediterranean area.

- [1] Skora, S., Baumgartner, L.P., Mahlen, N.J., Lapen, T.J., Johnson, C.M., Bussy, F. 2008. Estimation of a maximum Lu diffusion rate in a natural eclogite garnet. Swiss J. Geosci. DOI: 10.1007/s00015-008-1268-y.
- [2] Vitale Brovarone, A., Beltrando, M., Malavieille, J., Giuntoli, F, Tondella, E, Groppo, C., Beyssac, O. and Compagnoni, R., 2011a. Inherited Ocean-Continent Transition zones in deeply subducted terranes: Insights from Alpine Corsica, Lithos, doi: 10.1016/j.lithos.2011.02.013.
- [3] Martin., L., Rubatto, D., Vitale Brovarone, A., Hermann, J. 2011. Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica. Lithos, doi:10.1016/j.lithos.2011.03.015
- [4] Maggi M, Rossetti F, Theye T, Andersen T, Corfu F, Faccenna C. Sodic Pyroxene Bearing Phyllonites From the East Tenda Shear Zone: Constraining P-T Conditions and Timing of the Ligurian-Piemontese Ocean Overthrusting Onto the Variscan Corsica. Abstract Corsealp 2011. Saint Florent, Corsica, France.