

Tracing the Recycling of Water, Carbon, and Sulfur during Subduction Metamorphism of Seafloor Serpentinites:

C. J. Garrido (1), J.C. Alt (2), W.C. Sanks (3), A. Turchyn (4), J.A Padrón-Navarta (5,6), V. López-Sánchez-Vizcaíno (7), M.T. Gómez-Pugnaire (1), and C. Marchesi (1)

(1) CSIC-UGR, Instituto Andaluz de Ciencias de la Tierra, Granada, Spain (carlosg@ugr.es), (2) Department of Geological Sciences, The University of Michigan, Ann Arbor, MI, USA, (3) U.S. Geological Survey, Denver, CO, USA, (4) Department of Earth Sciences, University of Cambridge, Cambridge, UK, (5) Research School of Earth Sciences, ANU, Canberra, Australia, (6) Géosciences Montpellier, Univ. Montpellier II & CNRS, Montpellier, France, (7) Departamento de Geología, Universidad de Jaén, EPS Alfonso X, Linares, Jaén, Spain

We use the contents and isotope compositions of water, carbon, and sulfur in serpentinites and their dehydration products in order to trace the cycling of volatiles during subduction. Antigorite serpentinites of the Cerro del Almirez complex, Spain, contain 9-12 wt% H₂O and 910 ± 730 ppm sulfur, have bulk δ¹⁸O values of 8.6 ± 0.4‰, δD = -54 ± 5‰, and δ³⁴S = 5.0‰, consistent with serpentinization at temperatures of ~200°C by seawater hydrothermal fluids on the Tethyan seafloor. The serpentinites were dehydrated to chlorite-harzburgite (olivine + orthopyroxene + chlorite) at 700°C and 1.6-1.9 GPa during subduction metamorphism, resulting in loss of water, carbon, and sulfur. The chlorite-harzburgite contains 5.7 ± 1.9 wt% H₂O, have bulk δ¹⁸O = 8.0 ± 0.9 ‰, and δD = -77 ± 11‰. The rocks contain 650 ± 620 ppm sulfur having δ³⁴S = 1.2‰. Dehydration of serpentinite resulted in loss of 5 wt% H₂O having δ¹⁸O = 8-10‰, and δD = -27 to -65‰, and loss of 260 ppm sulfur as sulfate, having δ³⁴S = 14.5‰. The contents and δ¹³C of total carbon in the two rock types overlap, with a broad trend of decreasing carbon contents and δ¹³C from ~1300 to 200 ppm and -9.6 to -20.2‰. This reflects mixing between reduced carbon in the rocks (210 ppm, δ¹³C ≈ -26‰) and seawater-derived carbonate (δ¹³C ≈ -1‰). Our results indicate: 1) Serpentinized oceanic peridotites carry significant amounts of isotopically fractionated water, carbon and sulfur into subduction zones; 2) Subduction of serpentinites to high P and T results in loss of water, carbon, and sulfur, which can induce melting and contribute to ¹⁸O, D, and ³⁴S enrichments and oxidation of the sub-arc mantle wedge; and 3) Isotopically fractionated water, carbon, and sulfur in serpentinite dehydration products are recycled deeper into the mantle where they can contribute to isotope heterogeneities and may be significant for volatile budgets of the deep Earth.