

Temperature, albedo and evapotranspiration differences between forested and non-forested areas from MODIS observations

A. Montenegro (1,2), H. Beltrami (1,2), C. Matharoo (1,2), C. Hart (2), and Q. Mu (3)

(1) Climate and Atmospheric Science Institute (CASI), St. Francis Xavier University, Antigonish, Canada (amontene@stfx.ca), (2) Earth Sciences Dept., St. Francis Xavier University, Antigonish, Canada , (3) College of Forestry and Conservation, University of Montana, Missoula, USA

Land cover influences fluxes of mass and energy between the surface and the atmosphere, impacting climate on a broad range of spatial and temporal scales. To enhance our understanding of the climate system, it is important to understand how these fluxes change as a function of surface cover. This knowledge is particularly important in determining the climatic response to land cover change. Here we use remotely sensed global data from MODIS at $0.05^\circ \times 0.05^\circ$ spatial resolution to evaluate the local difference in temperature, albedo and evapotranspiration (ET) between forested and non-forested areas. The MODIS land cover product is used to determine the location of forested areas during the period between 2003 and 2007. In agreement with a large body of previous research, the albedo of non-forested areas is larger than that of forested areas, with the difference tending to increase with latitude. Also as expected, the ET over non-forested areas is smaller, with maximum differences found at lower latitudes. The pattern of temperature differences is more complex and not set exclusively by latitude. While non-forested areas are predominantly warmer at latitudes between $+30^\circ$, at mid and high latitudes temperature differences are mixed, with some non-forested areas being warmer while others are cooler than forested areas. This observed heterogeneity in the temperature differences is not presently well captured by global and regional climate models.