Geophysical Research Abstracts Vol. 14, EGU2012-9241, 2012 EGU General Assembly 2012 © Author(s) 2012

Stream-network scale patterns of CO₂ evasion

S Hengsberger (1), GA Singer (1), E Enrico (2), A Rinaldo (2), and TJ Battin (1) (1) University of Vienna, Department of Limnology, Vienna, Austria, (2) Ecole Polytechnique Federale, Lausanne, Switzerland

The relevance of inland waters for global carbon fluxes is becoming increasingly recognized. While data on local CO₂ evasion from individual lakes and streams are now becoming available at fast pace, we still lack methods to upscale these local fluxes to the landscape and eventually to entire fluvial networks. We measured and predicted CO₂ evasion in a pre-alpine fluvial network (Ybbs River, Austria) draining a 6th-order catchment (ca 400 km²). Measurements of pCO₂ in more than 100 streams showed, not unexpectedly, CO₂ supersaturation throughout the entire network and distinct diurnal patterns. Furthermore, using whole-stream propane injections, we assessed KCO₂, the CO₂ transfer coefficient, along with various hydrogeomorphological parameters in 20 streams. We found a significant negative correlation between KCO₂ values and stream discharge, which was used to predict KCO₂ for all study streams. In combination with a digital network model, these data serve to extrapolate reach-scale estimates of CO₂ evasion to the entire fluvial network. Furthermore, we used a suite of optical parameters that describe dissolved organic carbon properties to explain the spatial variation in pCO₂ in the fluvial network.