



## **Detection of reduced sulfur and other S-bearing species evolved from Rocknest sample in the Sample Analysis at Mars (SAM) experiment**

Caroline Freissinet (1), Amy McAdam (1), Doug Archer (2), Arnaud Buch (3), Jen Eigenbrode (1), Heather Franz (1), Daniel Glavin (1), Doug Ming (2), Rafael Navarro-Gonzalez (4), Andrew Steele (5), Jen Stern (1), Paul Mahaffy (1), and The SAM and MSL science teams ()

(1) NASA, GSFC, Greenbelt, United States (caroline.freissinet@nasa.gov), (2) NASA Johnson Space Center, Houston TX 77058, (3) Ecole Centrale Paris, Chatenay-Malabry, France, (4) Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico, (5) Carnegie Institution of Washington, Washington, DC 20015

The SAM instrument suite onboard the Mars Science Laboratory (MSL) Curiosity Rover detected sulfur-bearing compounds during pyrolysis of soil fines obtained from aeolian material at Rocknest in Gale Crater. SO<sub>2</sub> and H<sub>2</sub>S were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis mass spectrometry (EGA-MS) and after gas chromatograph separation (GC-MS) [1].

In EGA-MS, the 34 Da trace shows at least 3 peaks. The first peak is evolved at relatively low temperature (T), near 400°C, and the other peaks evolved as part of a “hump” at higher T, between ~500°C and ~800°C. The higher T releases at 34 Da occur at T close to, but not at exactly the same, as an evolution of SO<sub>2</sub> from the samples. We hypothesize that these 34 Da releases are due to H<sub>2</sub>S. This assertion is supported by peaks in 35 and 36 Da traces at the same T. The lower T release of 34 Da species corresponds to a large O<sub>2</sub> release from the Rocknest samples, and can be attributed for the most part to an isotopologue of O<sub>2</sub>. However, the GCMS analysis of the temperature cut involving this first evolved peak displays evidence of H<sub>2</sub>S based on a comparison of the mass spectrum to a NIST library. Therefore, we propose that H<sub>2</sub>S must be contributing to the 400°C peak. The quantification of H<sub>2</sub>S from GCMS shows an amount of this species of less than 1 nmol. It is unclear what the source of this lower T H<sub>2</sub>S is and how sulfur remains in its reduced form instead of undergoing oxidation to SO<sub>2</sub> at the temperature where O<sub>2</sub> is evolved; laboratory work with relevant analogs to inform these questions is ongoing. An initial hypothesis for the low temperature H<sub>2</sub>S source is the product of a reaction between an S-bearing phase and a hydrogen-bearing phase, such as the abundant water evolved at less than 500°C from the sample. Potential sources of this water are adsorbed water or mineral structural water.

There is also EGA-MS evidence of reaction of reduced S with CO<sub>2</sub> in the pyrolysis oven to form OCS (main mass 60 Da) and possibly CS<sub>2</sub> (main mass 76 Da). Sulfur in all detected compounds is highly likely to have a Martian origin, as from the analysis of SAM background, the S-bearing species are quantitatively very limited and no known chemical process enables the formation of H<sub>2</sub>S from the background. Pyrolysis experiments on SNC meteorites and most recently the Tissint meteorite show a large SO<sub>2</sub> peak evolved at temperatures above 600°C, which was not observed at lower temperature, and may be from sulfate thermal degradation. GC shows that a large quantity of CO<sub>2</sub> is evolved along with OCS and CS<sub>2</sub>. However, the absence of H<sub>2</sub>S confirms a high oxidation of the molecules in the sample. This Tissint meteorite is believed to have resemblances with Rocknest soil, and a cross-analysis of these results, in addition to the lab work, are essential steps for a complete understanding of these Martian sulfur-bearing compounds.