

Modeling of far-field pressure plumes and brine migration for CO₂ geological storage

Zhibing Yang, Auli Niemi, and Liang Tian

Department of Earth Sciences, Uppsala University, Uppsala, Sweden (zhibing.yang@hyd.uu.se)

Carbon sequestration in deep saline aquifers involves injection of large volumes of CO₂ which causes pressure increase in the reservoir formations. Recent work shows that the region of pressure increase can reach distances from the injection well that are far beyond the CO₂ plume itself. The adverse far-field impacts (e.g., for near-surface fresh-water aquifers) of the pressure build-up and brine migration can become a limiting factor for CO₂ storage capacity. It is therefore needed to carefully examine the evolution and impact of the pressure plume and far-field brine migration caused by commercial scale CO₂ injection under different conditions. Given the large size of the domains of interest, this poses a challenging modeling and parameter estimation problem, including issues of parameter upscaling. This study investigates the effect of several factors on the size of the propagating pressure plume and the magnitude of the pressure build-up. These factors include: (i) formation geometry and boundary conditions; (ii) depth-dependent formation material properties; and (iii) brine leakage through fractures zones and/or faults in the overlying units. For the reservoir formation we consider both generic and site-specific large-scale models, the latter based on data from formations in the Baltic Sea region. Numerical simulations for these large-scale models are conducted using both the full multiphase flow modeling approach and more simplified single-phase approaches. The simulation results are also discussed in terms of comparison to simple analytical and semi-analytical solutions.