

Solution Dynamics at the Rock/Snow Interface during Ablation Period in Subnival Karst of Wetterstein Mountains (Northern Calcareous Alps, Germany)

Carola Küfmann

LMU München, Lehrstuhl für Geographie und Landschaftsökologie, München, Germany
(carola.kuefmann@geographie.uni-muenchen.de, 089-2180-6654)

Solution Dynamics at the Rock/Snow Interface during Ablation Period in Subnival Karst of Wetterstein Mountains (Northern Calcareous Alps, Germany)

Abstract

The study focuses on limestone solution under snow (mean maximum depth: 450cm) in the subnival zone (2350 to 2600 m) of Wetterstein Mountains (47°24'N; 11°7'E). The analysis of melt water discharge out of two lysimeters (bare and debris-filled) at the rock/snow interface concentrates on carbon dioxide, defining water acidity. Diurnal records reveal low values of CO₂ and the synchronization of these amounts to runoff until stored CO₂ is depleted. Hourly data indicate that cold interface waters have only one fourth of the dissolution capacity of fresh superficial snow (mean: 4.5 mg • l⁻¹ CO₂). Mostly homothermal cold conditions at the base justify the supply of atmospheric CO₂ by percolating waters top down. Gas detector measurements, revealing a decrease of CO₂ with depth caused by increasing snow density, illuminate the control of snow properties also on CO₂ diffusion. Minimum amounts (0.005 vol.-%) at 300 cm depth, quadrupling near the surface, prove an insufficient supply of CO₂, causing low mean dissolution rates of debris. This almost closed system changes with strong snow cover reduction in July. Then, higher CO₂ values demonstrate enhanced atmospheric interaction, accelerating solution until the maximum of 28 mg • l⁻¹ CaCO₃. Seasonal solution intensity due to CO₂-triggered water acidity interacting with high melt water budgets explains subnival karst.