

Triple oxygen isotope composition of tropospheric carbon dioxide and its temporal variation

Magdalena E. G. Hofmann (1), Balázs Horváth (2), and Andreas Pack (3)

(1) Max-Planck Institute for Biogeochemistry, Jena, Germany (mhofmann@bgc-jena.mpg.de), (2) Imprint Analytics GmbH, Neutral, Austria (horvath@imprint-analytics.at), (3) University of Göttingen, Göttingen, Germany (apack@uni-goettingen.de)

Conventional stable isotope analysis of carbon dioxide ($^{18}\text{O}/^{16}\text{O}$ and $^{13}\text{C}/^{12}\text{C}$) is an excellent tool to investigate the atmospheric carbon cycle. In recent years, it has been suggested that investigations on the triple oxygen isotope composition ($^{17}\text{O}/^{16}\text{O}$ and $^{18}\text{O}/^{16}\text{O}$) might complement traditional stable isotope analysis as this new tracer should reveal information on the terrestrial gross primary production (GPP) [1].

Here, we present high-precision triple oxygen isotope data of ambient air CO_2 sampled in Göttingen (NW Germany) over the course of 2 years. Triple oxygen isotope analysis on CO_2 was carried using a $\text{CO}_2\text{-CeO}_2$ equilibration technique [2]. All triple oxygen isotope data are reported as $\Delta^{17}\text{O}$ values relative to a $\text{CO}_2\text{-water}$ equilibration line, i.e. $\Delta^{17}\text{O} = \ln(\delta^{17}\text{O}+1) - 0.522 \times \ln(\delta^{18}\text{O}+1)$ [3]. Accuracy and precision of $\Delta^{17}\text{O}$ (single analysis) was better than $\pm 0.05\text{\textperthousand}$ (1σ , SD). We compare our observational data to a revised triple oxygen isotope mass balance model of tropospheric CO_2 where we reconcile both $^{18}\text{O}/^{16}\text{O}$ and $^{17}\text{O}/^{16}\text{O}$ fractionation processes.

Carbon dioxide sampled in Göttingen has a long-term mean triple oxygen isotope composition with $\delta^{18}\text{O}_{VSMOW} = 41.6 \pm 0.9\text{\textperthousand}$ (SD) and $\Delta^{17}\text{O} = -0.03 \pm 0.07\text{\textperthousand}$ (SD). The $\delta^{18}\text{O}$ values follow the well-known seasonality with an amplitude of about $1.0\text{\textperthousand}$. The $\Delta^{17}\text{O}$ signal shows a temporal variation with a peak-to-peak range of about $0.25\text{\textperthousand}$ that parallels the $\delta^{18}\text{O}$ cycle from summer 2010 to winter 2011, i.e. maximum $\Delta^{17}\text{O}$ values during summer. During June, July and August 2012, however, the $\Delta^{17}\text{O}$ values are consistently lower ($\Delta^{17}\text{O} = -0.07 \pm 0.05\text{\textperthousand}$ (SD)) than the observational data from summer 2010 and 2011 ($\Delta^{17}\text{O} = +0.02 \pm 0.05\text{\textperthousand}$ (SD)).

The revised global mass balance model predicts a $\Delta^{17}\text{O}$ value for tropospheric CO_2 of $+0.06\text{\textperthousand}$. A Monte Carlo simulation gives an uncertainty estimate intrinsic to our model of $\pm 0.05\text{\textperthousand}$ (SD). The model confirms a sensitivity of $\Delta^{17}\text{O}$ of tropospheric CO_2 to variations in the terrestrial gross primary production. However, estimates for seasonal variations in regional gross fluxes from the biosphere cannot explain the observed temporal variation in $\Delta^{17}\text{O}$ of tropospheric CO_2 . Variations in anthropogenic CO_2 emissions also cannot explain the $\Delta^{17}\text{O}$ trend. Thus, it may be that variations in the influx of stratospheric CO_2 cause the observed temporal variation in $\Delta^{17}\text{O}$. However, we also suggest that future experimental studies should investigate in detail the $\Delta^{17}\text{O}$ signature of CO_2 from biological sources to clarify the mechanisms controlling the triple oxygen isotope composition of tropospheric CO_2 .

[1] Hoag, K.J., et al., Geophys. Res. Lett., 2005. 32(L02802): p. 1-5.

[2] Hofmann, M.E.G. and A. Pack, Anal. Chem., 2010. 82: p. 4357-4361.

[3] Hofmann, M.E.G., B. Horváth, and A. Pack, Earth Planet. Sci. Lett., 2012. 319-320: p. 159-164.