

Satellite-based drought monitoring in the Sahel: Evaluation of two global physically-based evapotranspiration algorithms

Monica Garcia (1,2), Qiaozhen Mu (3), Pietro Ceccato (1), Jonas Ardö (4), Eric Mougin (5), Laurent Kergoat (5), Franck Timouk (5), Inge Sandholt (2), and Joshua Fisher (6)

(1) International Research Institute for Climate and Society. Columbia University. Palisades, New York 1096, USA.
mgarcia@iri.columbia.edu, (2) Institute of Geography and Geology. University of Copenhagen. Copenhagen 1350 K. Denmark, (3) Numerical Terradynamic Simulation Group. University of Montana, Missoula. MT 59812 USA, (4) Dept. of Physical Geography and Ecosystems Science, Lund University 22362, Lund, Sweden, (5) Géosciences Environnement Toulouse. Observatoire Midi-Pyrénées 31401 Toulouse Cedex 9, France, (6) Water and Carbon Cycles group. NASA-JPL, Pasadena, CA 91109, USA.

Regional estimates of daily evapotranspiration and surface fluxes in water-scarce and climatic vulnerable regions are critical for improving agricultural and hydrological information as well as our understanding of land surface-atmosphere interactions. The final aim of this study is to evaluate two global operational evapotranspiration algorithms in the Sahelian grasslands of Africa, where in-situ data are scarce, relying on satellite products at 1 km spatial resolution with no field calibration or in-situ variables.

Two process-based models were applied to estimate surface fluxes including evapotranspiration (ET): the global MODIS evapotranspiration algorithm (MOD16), based on a three source Penman–Monteith approach; and a version of the PT-JPL model, based on a three source Priestley–Taylor model with an apparent thermal inertia module to estimate soil moisture.

Both models were forced using climatic reanalyses data from two sources: MERRA GMAO (NASA reanalysis GEOS-5) and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research). Additionally, to assess if errors were due to algorithm assumptions or with the quality of input data in-situ climatic tower data were used to compare with results from reanalyses. All model results were compared with eddy covariance data from two field sites in Mali and Sudan spanning a total period of 5 years.

Preliminary results showed a better performance of both algorithms using in-situ climatic data, with a superior performance of the PT-JPL model despite a low bias relative to the measured ET. Climatic forcing with MERRA provided better results than using NCEP data. Aggregation of results from daily to 8-day time scale decreased errors significantly. The PT-JPL model version with a thermal inertia approach to estimate soil moisture offers great potential for regionalization in regions where the main limitation to evapotranspiration is soil moisture, such as the Sahel as no field-calibrations are required the only input variables required are air temperature and incoming solar radiation, apart from routinely available satellite products.