

Calibration strategy, precision and long term stability of real-time analysis of N₂O isotopomers and the ¹⁸O-N₂O isotopologue by laser spectroscopy

Benjamin Wolf, Béla Tuzson, Lukas Emmenegger, and Joachim Mohn

EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf

Regional scale estimations of N₂O budgets using process oriented biogeochemical models are usually calibrated and validated by investigating the deviation from measured total N₂O emission. Differentiation between fluxes originating from nitrification or denitrification is commonly not considered as in-situ measurements capable of source partitioning are not available. Therefore, it is unclear if the relative source strengths of nitrification and denitrification are represented adequately in process oriented models.

The analysis of the four main isotopic species (¹⁴N¹⁵N¹⁶O / ¹⁵N¹⁴N¹⁶O / ¹⁴N¹⁴N¹⁸O / ¹⁴N¹⁴N¹⁶O) has been suggested as a powerful tool to trace the biogeochemical cycle of N₂O and to allocate its emission sources. In microbial pure culture studies and mixed population systems (Wunderlin et al. 2012) characteristic isotopic signatures have been identified for the most important bacterial production processes. These have been applied to identify relevant sources at different scales (Park et al. 2012). However, current studies suffer from limited spatial and temporal resolution due to the combination of discrete flask sampling with laboratory-based mass spectrometric analysis. Recently, a quantum cascade laser based spectrometer capable of simultaneously measuring the three main N₂O isotopomers has been presented (Waechter et al. 2008). Furthermore, its potential for in-situ measurements in conjunction with a liquid nitrogen-free pre-concentration unit has been proven (Mohn et al. 2012).

Here we present the latest results obtained from a state-of-the-art laser spectrometer employing recently available cw-QCL and a novel astigmatic absorption cell with a 200 m optical path length. The adequate selection of the spectral range allows us to simultaneously measure all four main isotopic species of N₂O with 0.04‰ and 1‰ precision in pre-concentrated ambient and ambient air respectively.

We introduce an efficient and accurate calibration strategy for the simultaneous analysis of the N₂O isotope ratios $\delta^{15}\text{N}^\alpha$, $\delta^{15}\text{N}^\beta$ and $\delta^{18}\text{O}$. Sample gas pre-treatment and N₂O pre-concentration were optimized with respect to reproducibility and minimization of fractionation effects. The long-term accuracy of the instrument for isotope ratios will be addressed and extended by first in-situ measurements from a field campaign starting in spring 2013 in Central Switzerland. The results will be discussed in relation to requirements for background air monitoring at remote locations.

Mohn, J, B Tuzson, A Manninen, N Yoshida, S Toyoda, W A Brand, and L Emmenegger. 2012. "Site selective real-time measurements of atmospheric N₂O isotopomers by laser spectroscopy." *Atmospheric Measurement Techniques* 5(7): 1601–1609

Park, S., P. Croteau, K. A. Boering, D. M. Etheridge, D. Ferretti, P. J. Fraser, K-R. Kim, P. B. Krummel, R. L. Langenfelds, T. D. van Ommen, L. P. Steele, and C. M. Trudinger. 2012. "Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940." *Nature Geoscience* 5(4): 261–265.

Waechter, H, J Mohn, B Tuzson, L Emmenegger, and M W Sigrist. 2008. "Determination of N₂O isotopomers with quantum cascade laser based absorption spectroscopy." *Optics Express* 16(12): 9239–44.

Wunderlin, P, M Lehmann, H Siegrist, B Tuzson, A Joss, L Emmenegger, and J Mohn. 2012. "Isotope signatures of N₂O in a mixed microbial population system: Constraints on N₂O producing pathways in wastewater treatment." *Environmental Science and Technology* 10.1021/es