Speeding up posterior inference of an high-dimensional groundwater flow model from two-stage MCMC simulation and polynomial chaos expansion

Eric Laloy (1), Bart Rogiers (2), Jasper Vrugt (3), Dirk Mallants (4), and Diederik Jacques (5)
(1) Belgian Nuclear Research Center, Performance Assessments, Brussels, Belgium (elaloy@sckcen.be), (2) Belgian Nuclear Research Center, Performance Assessments, Brussels, Belgium (brogiers@sckcen.be), (3) Department of Civil and Environmental Engineering, University of California Irvine, Irvine, USA (jasper@uci.edu), (4) CSIRO Land and Water, Urrbrae South Australia, Australia (dirk.mallants@csiro.au), (5) Nuclear Research Center, Performance Assessments, Brussels, Belgium (djacques@sckcen.be)

This study presents a novel strategy for accelerating posterior exploration of highly parameterized and CPU-demanding hydrogeologic models. The method builds on the stochastic collocation approach of Marzouk and Xiu (2009) and uses the generalized polynomial chaos (gPC) framework to emulate the output of a groundwater flow model. The resulting surrogate model is CPU-efficient and allows for sampling the posterior parameter distribution at a much reduced computational cost. This surrogate distribution is subsequently employed to precondition a state-of-the-art two-stage Markov chain Monte Carlo (MCMC) simulation (Vrugt et al., 2009; Cui et al., 2011) of the original CPU-demanding flow model. Application of the proposed method to the hydrogeological characterization of a three-dimensional multi-layered aquifer shows a 2-5 times speed up in sampling efficiency.