

Limitations & challenges for understanding of $\delta^{13}\text{C}$ variation in soil

Yakov Kuzyakov

University of Göttingen, Dept. of Soil Science of Temperate Ecosystems, Dept. of Agropedology, Göttingen, Germany
(kuzyakov@gwdg.de)

Natural variation of $\delta^{13}\text{C}$ ($\delta^{13}\text{C}$ natural abundance) in soil is frequently used for understanding of various processes, mainly: i) the equilibrium between the formation, stabilization and decomposition of soil organic matter (SOM) pools, ii) effects of environmental conditions on SOM, and iii) trends in the $\delta^{13}\text{C}$ as a result of long-term effects. However, various factors affect simultaneously $\delta^{13}\text{C}$ value of SOM pools and of CO_2 and consequently limit application of the $\delta^{13}\text{C}$ natural abundance approach. Frequently these factors affect $\delta^{13}\text{C}$ in opposite directions, and may compensate each other. Additionally, unexplained spatial and/or temporal variation of $\delta^{13}\text{C}$ within different scales makes the interpretation of data extremely difficult. Therefore, I aimed this overview on i) evaluation of the ranges of spatial and temporal variation of $\delta^{13}\text{C}$ values in soil, ii) distinguishing between ^{13}C fractionation and preferential substrate utilization, and iii) separation of variations from trends.

Literature data and own results allowed to conclude that the spatial variation of $\delta^{13}\text{C}$ of SOM within one agricultural field usually is more than 2\textperthousand . The CO_2 in soil and CO_2 flux from soil have spatial variation similar to that of SOM ($\sim 2\text{\textperthousand}$, but temporal variation $\delta^{13}\text{C}$ in CO_2 is at least two times higher. This is connected with admixture of atmospheric CO_2 depending on soil and air moisture and on contribution of CO_2 from various soil depths. Within one meter soil depth the $\delta^{13}\text{C}$ has an increasing trend of about 3\textperthousand with variation up to $\pm 2\text{\textperthousand}$. Suess effect (1955) strongly depleted the $\delta^{13}\text{C}$ of all SOM pools (especially in the upper soil horizons) up to $-1.5\text{\textperthousand}$ and this trend will be stronger and faster in the future.

It is very difficult to separate two processes affecting $\delta^{13}\text{C}$ of SOM pools: ^{13}C fractionation and preferential substrate utilization. The $\delta^{13}\text{C}$ fractionation means favored involvement in processes of the chemically identical substances but with light isotopes (here ^{12}C). The preferential substrate utilization is caused by preferable utilization of chemically different substrates within a substrate mixture (e.g. plant residues components) having different $\delta^{13}\text{C}$ values. To clarify this, typical $\delta^{13}\text{C}$ differences between SOM, microbial biomass, dissolved organic C and CO_2 were analyzed. Changes of $\delta^{13}\text{C}$ values of CO_2 during incubation studies were caused by sequential utilization of substrates with different $\delta^{13}\text{C}$ values. Finally, an overview of various processes leading to the directed changes (trends) and to unexplained variations were compared.