

Atmosphere-Snowpack NO_x Exchange: Measurements at Summit, Greenland and Process-Scale Modeling

Keenan Murray (1), Laurens Ganzeveld (2), Louisa Kramer (1), Paul Doskey (1), Detlev Helmig (3), Brian Seok (3), and Brie Van Dam (3)

(1) Michigan Technological University, Houghton, MI, USA (kmurray@mtu.edu), (2) Wageningen University, Wageningen, Netherlands, (3) University of Colorado Boulder, Boulder, CO, USA

Atmosphere-Snowpack NO_x Exchange: Measurements at Summit, Greenland and Process-Scale Modeling

Keenan A. Murray, Laurens Ganzeveld, Louisa J. Kramer, Paul V. Doskey, Detlev Helmig, Brian Seok, Brie Van Dam

Snowpack over glacial ice is a reservoir for reactive nitrogen gases. During the sunlit season, NO_x is generated in the interstitial air of snowpack through photolysis of nitrate (NO_3^-) in snow. Gradients in NO_x mixing ratios between snowpack interstitial air and the overlying atmosphere regulate transfer of NO_x to/from snowpack and affect the atmospheric O_3 budget, oxidation capacity and, consequently, climate. To better understand the dynamics in cryosphere-atmosphere exchange of NO_x we have collected 2 years of meteorological and chemical data at Summit, Greenland. Profiles of NO , NO_2 and O_3 mixing ratios were measured in interstitial air at several depths in the snowpack and at 2 levels above the snow surface. NO_x emissions are episodic, with large NO_x events occurring in early spring during high wind speed events (10-20 mph) that elevate NO_x levels to ~ 500 pptv to depths of 2.5 meters into the snowpack. The poster will present measurements of NO , NO_2 , O_3 , wind, and irradiance for a high NO_x event in the snowpack during the 2008-2010 period. Analysis of these observations will be based upon the application of a 1-D process-scale model of the atmosphere-snowpack exchange of NO_x , which includes representations of the snowpack chemistry of reactive nitrogen, peroxides, and small hydrocarbon species. A more highly parameterized version of the process-scale model is currently being developed for inclusion in a global-scale model to assess the implications of climate change on cryosphere-atmosphere NO_x and Ox exchange. We will present a first comparison of the predicated NO_x and O_3 profiles and fluxes from the process-scale/parameterized models, respectively, to observed measurements.