

Dynamics of Convective Dissolution from a Migrating Current of Carbon Dioxide

Juan J. Hidalgo (1), Christopher W. MacMinn (2), and Ruben Juanes (3)

(1) IDAEA - CSIC, Barcelona, Spain (juan.j.hidalgo@idaea.csic.es), (2) Yale University, New Haven, CT, USA (christopher.macminn@yale.edu), (3) MIT, Cambridge, MA, USA (juan.es@mit.edu)

During geologic storage of carbon dioxide (CO₂), trapping of the buoyant CO₂ after injection is essential in order to minimize the risk of leakage into shallower formations through a fracture or abandoned well. Accurate models for the subsurface behavior of the CO₂ are essential for the design, implementation, and long-term monitoring of injection sites, but traditional reservoir-simulation tools are currently unable to resolve the impact of small-scale trapping processes on fluid flow at the scale of a geologic basin. Here, we study the impact of solubility trapping driven by convective dissolution on the up-dip migration of a buoyant gravity current of CO₂ in a sloping aquifer. We do so using high-resolution numerical simulations that fully resolve the dense, sinking fingers of CO₂-rich brine that drive the convective dissolution process. We analyze the dynamics of the dissolution flux along the moving CO₂-brine interface, including its decay as dissolved CO₂ accumulates in the brine beneath the buoyant current. We show that the dynamics of the flux and the macroscopic features of the migrating current, including its shape, its mass, and the position of its leading edge, can be reproduced by using upscaled parameters in a one-dimensional sharp-interface model.