

The Application and Future Direction of the SPASE Metadata Standard in the U.S. and Worldwide

Todd King (1), James Thieman (2), and D. Aaron Roberts (3)

(1) IGPP/ESS, UCLA, Los Angeles, CA, United States (tking@igpp.ucla.edu), (2) NASA/GSFC, Greenbelt, MD, United States (james.r.thieman@nasa.gov), (3) Code 672, NASA/GSFC, Greenbelt, MD, United States (aaron.roberts@nasa.gov)

The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has been stable since January 2011. The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches.

In development are modifications to accommodate simulation and model data, as well as enhancements to describe data accessibility. These additions will add features to describe a broader range of data types. In keeping with a SPASE principle of back-compatibility, these changes will not affect the data descriptions already generated for instrument-related datasets. We also look at the long term commitment by NASA to support the SPASE effort and how SPASE metadata can enable value-added services.