

Fluxes of the greenhouse gases (CO₂, CH₄ and N₂O) above a short-rotation poplar plantation after conversion from agricultural land

Donatella Zona (1) and Reinhart Ceulemans (2)

(1) The University of Sheffield, Department of Animal and Plant Sciences, Sheffield, United Kingdom
(d.zona@sheffield.ac.uk), (2) University of Antwerp, Antwerp, Belgium

The increasing demand for renewable energy may lead to the conversion of millions of hectares into bioenergy plantations with a possible substantial transitory carbon (C) loss. In this study we report on the greenhouse gas fluxes (CO₂, CH₄, and N₂O) measured using eddy covariance of a short-rotation bioenergy poplar plantation converted from agricultural fields. During the first six months after the establishment of the plantation (June-Dec 2010) there were substantial CO₂, CH₄, and N₂O emissions (a total of 5.36 ± 0.52 Mg CO₂eq ha⁻¹ in terms of CO₂ equivalents). Nitrous oxide loss mostly occurred during a week-long peak emission after an unusually large rainfall. This week-long N₂O emission represented 52% of the entire N₂O loss during one and an half years of measurements. As most of the N₂O loss occurred in just this week-long period, accurately capturing these emission events are critical to accurate estimates of the GHG balance of bioenergy. While initial establishment (Jun-Dec 2010) of the plantation resulted in a net CO₂ loss into the atmosphere (2.76 ± 0.16 Mg CO₂eq ha⁻¹), in the second year (2011) there was substantial net CO₂ uptake (-3.51 ± 0.56 Mg CO₂eq ha⁻¹). During the entire measurement period, CH₄ was a source to the atmosphere (0.63 ± 0.05 Mg CO₂eq ha⁻¹ in 2010, and 0.49 ± 0.05 Mg CO₂eq ha⁻¹ in 2011), and was controlled by water table depth. Importantly, over the entire measurement period, the sum of the CH₄ and N₂O losses was much higher (3.51 ± 0.52 Mg CO₂eq ha⁻¹) than the net CO₂ uptake (-0.76 ± 0.58 Mg CO₂eq ha⁻¹). As water availability was an important control on the GHG emission of the plantation, expected climate change and altered rainfall pattern could increase the negative environmental impacts of bioenergy.