

Characterisation of iron-(hydr)oxides in bulk soils and colloidal fractions using state-of-the-art techniques

Inge C. Regelink (1), Liping Weng (1), Andreas Voegelin (2), Gerwin F. Koopmans (1), and Rob Comans (1)

(1) Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands, (2) Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland

Iron-(hydr)oxide particles in soils have extremely large surface-to-mass ratios and are therefore considered to make up the largest fraction of the soils reactive surface area. Fe-(hydr)oxide particles are only a few nanometer in size when their surface-to-mass ratios are expressed as equivalent particle diameters. This suggests that Fe-(hydr)oxides are predominantly present as nano-sized particles in the soil. However, Fe-(hydr)oxides may aggregate or may be tightly attached to surfaces of larger particles. As a consequence, Fe-(hydr)oxides can have large surface-to-mass ratios without being present in the nanofraction. To understand the role of Fe-(hydr)oxides in aggregation and to assess their potential mobility in soils, it is important to know the size-distribution and setting of the Fe-(hydr)oxide particles. Therefore, the objective of this study is to characterize Fe-(hydr)oxides in the colloidal fraction, which we defined as the fraction smaller than $0.45 \mu\text{m}$, and to compare these outcomes with characteristics of Fe-(hydr)oxides in the bulk soil. Two procedures were used to disperse the colloids from the bulk soil: 1) mechanical dispersion by ultrasonic treatment of NaHCO_3 -soil suspensions and 2) chemical/mechanical dispersion by ultrasonic treatment of pyrophosphate-soil suspensions. The size-distribution and elemental composition of the colloids of seven soils were analysed by Asymmetric Flow Field-Flow Fractionation (AF4) coupled to High-Resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICP-MS). For two soils, Fe speciation of bulk soil and colloidal fractions were determined by extended X-ray absorption fine structure (EXAFS) spectroscopy. In addition, Fe-(hydr)oxides in bulk soils and colloids were visualized by scanning electron microscopy (SEM) with energy dispersive X-ray detection (EDX) for element detection. Results for the bulk soils showed that reactive surface areas of Fe-(hydr)oxides correspond to equivalent particle diameters of a few nanometers only and SEM-images showed that Fe-(hydr)oxides were present as aggregates or were associated with clay and silt particles. Results for the colloidal fractions showed that mechanical dispersion released only small amounts of Fe-(hydr)oxide nanoparticles from the soils. These Fe-(hydr)oxides were mainly associated with clay and only a small fraction was present as single particles (i.e. not associated to other particles). More Fe-(hydr)oxide nanoparticles were dispersed by pyrophosphate, which also extracted between 39 and 66% of the soil-organic-carbon content. For the different soils, between 1 and 36% of the Fe-(hydr)oxide content was dispersible as single nanoparticles, which were 1 to 15 nm in size. Iron-(hydr)oxide nanoparticles dispersed by pyrophosphate were on average smaller than Fe-(hydr)oxides dispersed by ultrasound energy only. Iron speciation analyses showed that amorphous and crystalline Fe-(hydr)oxides were present in the colloidal fractions. Our results show that pyrophosphate can disperse organo-mineral aggregates which results in the mobilization of Fe-(hydr)oxide nanoparticles. In contrast, ultrasound energy is not sufficient to disperse Fe-(hydr)oxides that are incorporated within organo-mineral aggregates. The majority of Fe-(hydr)oxides in soils cannot be dispersed as nanoparticles, which shows that Fe-(hydr)oxides are strongly retained within the soil matrix. Altogether, the combination of AF4-HR-ICP-MS with microscopic- and spectroscopic techniques is a novel approach to study Fe-(hydr)oxides in the soil's colloidal fraction.