

Model quantification of the CO₂ storage in the Los Páramos site (Duero basin, NE Spain)

Albert Nardi (1), Fidel Grandia (1), Elena Abarca (1), Kilian Motis (2), and Jorge Molinero (1)

(1) Amphos 21 Consulting S.L., Barcelona, Spain (fidel.grandia@amphos21.com), (2) Oil&Gas Capital, Madrid, Spain (kmotis@oilandgascapital.com)

The Duero basin in NW Spain is one the most promising basin for CO₂ storage in the Iberian Peninsula due to the existence of favourable deep aquifers close to large CO₂ emission point sources. A number of projects are presently active either for scientific research (e.g., the Hontomín site, OXI-CFB300 EPRR project) or commercial purposes (e.g., Sahagún and Los Páramos projects). The project called Los Páramos intends to assess the injection of CO₂ in a group of dome-shaped structures with an estimated total capacity of 200 Mt (ranked 2nd in the Iberian Peninsula, IGME 2010). These domes were studied in the past for hydrocarbon exploration and a large body of information is available from seismic profiles (over 170 km) and 3 deep wells. The Los Páramos site is emplaced in the San Pedro Folded Band (SPFB) that consists mainly of thick-skinned thrusts of Mesozoic rocks (Triassic and Upper Cretaceous) sealed by a thick (1200-1500 m), undeformed cover of Tertiary claystones. Dome-like structures are related to thrusts leading to favourable reservoirs. The target horizon for CO₂ storage is the Utrillas Fm sandstone with high porosity (13-20%) and thickness (225-250 m). In three of the domes, the Utrillas Fm is below -800m, allowing thus the storage of CO₂(sc). This sandstone hosts an aquifer containing saline water, up to 50 g·L⁻¹, according to the data from drill wells. The presence of saline groundwater is explained by water interaction with Triassic evaporite layers just underlying the Utrillas Fm sandstones.

The CO₂ storage at Los Páramos site is planned via injection of supercritical CO₂ (CO₂(sc)) in the Utrillas Fm. In general, the next four trapping mechanisms are expected, which are of increasing importance through time (1) structural, (2) residual saturation, (3) dissolution, and (4) mineral.

The prediction of the mass of CO₂ stored through time in any storage systems is an essential parameter in the pre-injection assessment of a geological storage. For safety reasons, it is relevant to know the mass of CO₂ trapped under the different trapping mechanisms. In this work, storage quantification in the Dome B of Los Páramos site has been performed by using multiphase transport simulations with COMSOL Multiphysics. Model results predict well the amount of CO₂ trapped as residual phase and the onset of the formation of CO₂-rich brine fingers and their extent and evolution.