

A thermodynamic model for phase equilibria in the H₂O-CO₂-NaCl system

Benoit Dubacq (1,2), Mike Bickle (2), and Katy Evans (3)

(1) Université P.M. Curie - Paris 6, ISTE_P, France (benoit.dubacq@upmc.fr), (2) Dept. of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK, (3) Dept. Applied Geology, Curtin University of Technology, GPO Box U1987 Perth, WA 6845, Australia

The H₂O-CO₂-NaCl system is key in understanding the processes at work in many geological contexts, including mantle wedge metasomatism, seawater composition, the global carbon cycle and CO₂ underground sequestration. Despite numerous thermodynamic models allowing calculation of CO₂ solubility and various fluid properties as a function of pressure, temperature, and aqueous phase composition, there is still a need for an accurate thermodynamic model valid over a large range of conditions. We present a semi-empirical thermodynamic model with uncertainties that encompasses the full range of compositions in H₂O-CO₂-NaCl mixtures in the range of 10-380°C and 1-3500 bars. We use a simple formalism derived from metamorphic petrology (Holland and Powell, 2003; Evans and Powell, 2006) to describe activity-composition relations, which we parametrise using a combination of solubility experiments, density and conductivity measurements. With this formalism, activities are described by interaction parameters varying with intensive properties such as pressure and temperature but not with concentration or ionic strength.

The parameters describing interactions between H₂O and CO₂ are evaluated independently of the thermodynamic properties of the end-members and vary strongly non-linearly with pressure and temperature. The activity of water is shown to remain higher than 0.88 in CO₂-saturated solutions across the entire pressure-temperature range.

In the H₂O-NaCl system, the thermodynamic model reproduces solubility experiments of halite up to 650°C and 10 kbar, and accounts for ion pairing of aqueous sodium and chloride ions with the use of associated and dissociated aqueous sodium chloride end-members whose relative proportions vary with salinity.

In the H₂O-CO₂-NaCl system, an activity-composition model reproduces the salting-out effect with interactions parameters between aqueous CO₂ and the aqueous species created by halite dissolution. The proposed thermodynamic properties are compatible with the THERMOCALC database (Holland and Powell, 2011) and the equations used to retrieve the activity model in H₂O-CO₂ can be readily applied to other binary systems, including minerals.

Evans K. and Powell R. (2006) A method for activity calculations in saline and mixed solvent solutions at elevated temperature and pressure: A framework for geological phase equilibria calculations. *Geochimica et Cosmochimica Acta* 70, 22, 5488-5506

Holland T. and Powell R. (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. *Contributions to Mineralogy and Petrology* 145, 4, 492-501

Holland T. and Powell R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. *Journal of Metamorphic Geology* 29, 333-383