

Hydrological Evaluation of Satellite-Based Precipitation Products over the Volta and Baro-Akobo Basin

Vera Thiemig (1), Mauricio Zambrano (2), Rodrigo Rojas (2), Ad De Roo (1,3)

(1) Utrecht University, Faculty of Geosciences, Utrecht, The Netherlands, (2) Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy, (3) Water Resources Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

How useful are satellite-based rainfall estimates (SRFE) as forcing data for hydrological applications? Which SRFE should be favoured for hydrological modelling? What could researchers do to increase the performance of SRFE-driven hydrological simulations? To address these three research questions, four SRFE (CMORPH, RFE 2.0, TRMM-3B42 and PERSIANN) and one reanalysis product (ERA-Interim) are evaluated within a hydrological application for the time period 2003-2008, over two river basins (Volta and Baro-Akobo) which hold distinct physiographic, climatologic and hydrologic conditions. The focus was on the assessment of: a) the individual and combined effect of SRFE-specific calibration and bias-correction on the hydrological performance, b) the level of complexity required regarding bias-correction and interpolation to achieve a good hydrological performance, and c) the hydrological performance of SRFE during high- and low-flow conditions. Results show that 1) the hydrological performance is always higher if the model is calibrated to the respective SRFE rather than to interpolated ground observations; 2) for SRFE that are afflicted with bias, a bias-correction step prior to SRFE-specific calibration is essential, while for SRFE with good intrinsic data quality applying a SRFE-specific model calibration is sufficient; 3) the more sophisticated bias-correction method used in this work (histogram equalization) results generally in a superior hydrological performance, while a more sophisticated interpolation method (Kriging with External Drift) seems to be of added value only over mountainous regions; 4) the bias-correction is not over-proportionally important over mountainous catchments, as it solely depends on where the SRFE show high biases (e.g. for PERSIANN and CMORPH over lowland areas); and 5) the hydrological performance during high-flow conditions is superior thus promoting the use of SRFE for applications focusing on the high-end flow spectrum. These results complement a preliminary "ground truthing" phase and provide insight on the usefulness of SRFE for hydrological modelling and under which conditions they can be used with a given level of reliability.