

The effect of anaerobicity and temperature on N_2 and N_2O dynamics in forestry drained boreal peat soils

Mari Pihlatie (1,2), Isto Hongisto (1,2), Michael Dannenmann (2), Willibald Georg (2), Gasche Rainer (2), and Butterbach-Bahl Klaus (2)

(1) University of Helsinki, Department of Physics, Division of Atmospheric Sciences, P.O. Box 48, Finland
(mari.pihlatie@helsinki.fi), (2) Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK), Atmospheric Environmental Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany

Molecular nitrogen (N_2) is the dominant end-product of microbial denitrification in soils; however, due to difficulties in measuring N_2 exchange, the emissions of N_2 from terrestrial ecosystems are largely unknown. In boreal peatland soils, the combination of high soil carbon and nitrogen contents, fluctuating water-table and high decomposition activity of the peat make these soils potentially large emitters of N gases via microbial denitrification processes. This motivated us to quantify the N_2 and nitrous oxide (N_2O) losses from boreal drained peat soils varying in fertility status.

Soil samples were collected from two drained peatland forests: a nutrient-rich (Lettosuo) and a nutrient-poor (Kalevansuo) site, both located in the boreal zone of Southern Finland. N_2 and N_2O emissions from intact soil cores were measured using the helium gas flow soil core method. Two incubation experiments were conducted focusing on the effects of anaerobicity and temperature on N_2 and N_2O dynamics of the top-soil (experiment 1), and the effect of anaerobicity on N_2 and N_2O dynamics in the peat profile (experiment 2). Soil samples in experiment 1 were incubated under 1) cold (2°C) aerobic (20% O_2 , 80% He), 2) cold (2°C) anaerobic (0% O_2 , 100% He), and 3) warm (15°C) anaerobic conditions, while those in experiment 2 were incubated under 1) warm aerobic and 2) warm anaerobic conditions. Dynamics of N_2 and N_2O fluxes for each incubation condition were followed until fluxes stabilized.

In general, the N_2 and N_2O fluxes in the nutrient-rich Lettosuo peat were higher and more variable than those at the nutrient-poor Kalevansuo peat. In the nutrient-rich Lettosuo, both the N_2 and N_2O emissions increased dramatically after the change from aerobic to anaerobic conditions, and again after the temperature rise from 2 to 15°C. This latter peak in emissions was followed by a switch from N_2O production to N_2O consumption and a simultaneous sharp decrease in N_2 emissions. Although, the N_2 and N_2O fluxes in the nutrient-poor Kalevansuo peat were small and close to the detection limit, the change from the aerobic to anaerobic conditions induced significant N_2O uptake, which was even more pronounced under warm anaerobic conditions. At the nutrient-rich Lettosuo, all the three soil layers (10-15 cm, 15-20 cm, 40-45 cm) were equally active in N_2 and N_2O production or consumption. Overall, N_2 emissions from both sites always exceeded N_2O emissions, and when the fluxes were positive and above their detection limits, the ratio of $\text{N}_2:\text{N}_2\text{O}$ ranged between 1 and 180.