

Land use change through afforestation has contrasting effects on net ecosystem greenhouse gas budgets.

Matthew Saunders (1), Brian Tobin (2), Giuseppe Benanti (1), and Osborne Bruce (1)

(1) University College Dublin, School of Biology and Environmental Sciences, Belfield, D4, Dublin, Ireland
(matthew.saunders147@gmail.com; giuseppe.benanti@ucdconnect.ie; bruce.osborne@ucd.ie) , (2) University College Dublin, School of Agriculture, Food Science and Veterinary Science, University College Dublin, Belfield, D4, Dublin, Ireland (brian.tobin@ucd.ie)

Forest ecosystems represent a significant carbon store and play an important role in climate change mitigation through carbon sequestration. The impacts of land use change through afforestation on net ecosystem greenhouse gas emissions was investigated using a mobile eddy covariance tower to measure net ecosystem carbon dioxide exchange (NEE) together with static chamber techniques to measure soil derived trace gas emissions of methane (CH₄) and nitrous oxide (N₂O). A chronosequence (age-related) approach was used to investigate the conversion of marginal and managed grasslands to Sitka spruce and Ash plantations, respectively. The net carbon sink strength of both forest chronosequences was observed to increase after land conversion and with forest age due to an increase in productivity associated with the transition from non-forest vegetation to a closed canopy forest and the greater utilisation of resources such as light, water and nutrients. In the Sitka spruce plantation the net ecosystem carbon sink for the grassland, eight and sixteen year old stands was 0.26, 2.21 and 8.52 t C ha⁻¹ yr⁻¹, respectively, while NEE for the Ash plantation was 0.62, 1.38 and 4.67 t C ha⁻¹ yr⁻¹ for the grassland, six and twelve year old stands, respectively. Trace gas emissions however, exhibited contrasting patterns for the Sitka spruce chronosequence where CH₄ emissions were 7.61, 0.49 and -0.80 kg ha⁻¹ yr⁻¹ for the same chronosequence, while N₂O emissions increased from 0.12 to 10.12 kg ha⁻¹ yr⁻¹, representing some of the highest N₂O fluxes from un fertilised coniferous forests in Europe. Trace gas emissions from the Ash chronosequence were significantly lower in comparison to the Sitka spruce plantations and the annual N₂O (0.17-0.70 kg ha⁻¹ yr⁻¹) and CH₄ (-0.28 to -0.91 kg ha⁻¹ yr⁻¹) dynamics were not influenced by afforestation, indicating that generalisations about the influence of afforestation on GHG emissions is difficult. For the Sitka spruce forest the contribution of these gases to the total greenhouse gas (GHG) budget has the potential to reduce the global warming amelioration capacity by between 8-12%.