

Long-term landscape evolution of Namibia as revealed by thermochronological data.

Ulrich Anton Glasmacher, Daniel Menges, and Markus Karl

University Heidelberg, Institute of Earth Sciences, Institute of Earth Sciences, Thermochronology and Archaeometry, Heidelberg, Germany (ulrich.a.glasmacher@geow.uni-heidelberg.de, 00496221545503)

During the last 10 years research efforts have been devoted to understand the coupling between tectonic and surface processes in the formation of recent topography. Quantification of the rate at which landforms adapt to a changing tectonic, heat flow, and climate environment in the long term has become an important research object and uses intensively data revealed by low-temperature thermochronology, terrigenous cosmogenic nuclide, and geomorphological analyses. The influence of endogenic forces such as mantle processes as one of the causes for “Dynamic Topography Evolution” have been explored in a few studies, recently. In addition, the increased understanding how change in surface topography, and change in the amount of downward moving cold surface water caused by climate change affects warping isotherms in the uppermost crust allows further interpretation of low-temperature thermochronological data.

“Passive” continental margins and adjacent continental segments especially at the South Atlantic ocean are perfect locations to quantify exhumation and uplift rates, model the long-term landscape evolution and provide information on the influence of mantle processes on a longer time scale. This climate-continental margin-mantle process-response system is caused by the interaction between endogenic and exogenic forces that are related to the mantle-process driven rift – drift – “passive” continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Furthermore, the influence of major transform faults (also called: transfer zones, Fracture Zones (FZ)) on the long-term evolution of “passive” continental margins is still very much in debate. The ideal situation of fracture zones crossing the whole South Atlantic and extending into the continents on both passive margin sides give rise to study the long-term behavior of such FZ.

The presentation will discuss the long-term landscape evolution of Namibia and compare the existing data with those of South Africa.