Experimental study of hard-X ray emission from laboratory sparks

Martino Marisaldi (1,2,3), Rolando Rizzi (4), Giuseppe Levi (4,3), Roberto Malgesini (5), Andrea Villa (5), Paolo Mazza (5), Claudio Labanti (1,3), Fabio Fuschino (1,3), Riccardo Campana (1,3), David Bianchini (4,3), Rossella Brancaccio (4,3), Alessandro Montanari (4,3), Laura Patrizii (4,3)

(1) INAF-IASF Bologna, Italy (marisaldi@iasfbo.inaf.it), (2) Birkeland Centre for Space Science, University of Bergen, Norway, (3) INFN Bologna, Italy, (4) Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Italy, (5) Ricerca Sistema Energetico (RSE), Milano, Italy

We present the characterization of hard-X rays produced by meter-long laboratory sparks carried out at the high-voltage laboratory of RSE, Milano, Italy. Sparks are known to emit X-rays when positive and negative streamers connect, before breakdown. Numerical simulations suggest that X-rays are produced by Bremsstrahlung in air by electrons accelerated to the runaway regime in the high electric field at the streamers tip. Positive meter-long discharges are produced by a Marx generator loaded by a meter-long air gap formed by a spherical anode and a conical-shaped cathode. Maximum voltage at breakdown is about 1 MV. We investigate the production of X-rays by means of an array of scintillation detectors deployed around the cathode. Each detector is a 2” NaI(Tl) scintillating crystal coupled to a photomultiplier tube (PMT). Each detector is battery-powered and enclosed in a metallic housing for EM shielding. Analog signal output is transmitted to a shielded control room by means of optical fibre tranceivers, and then collected by a fast digitizer. We present the experimental setup and first results concerning detection efficiency, energy spectra, and geometrical distribution of the emission.