

Parametric Model of Chorus Waves in the Outer Radiation Belt from Ten Years Cluster Measurements

Oleksiy Agapitov (1,2), Anton Artemyev (3), Vladimir Krasnoselskikh (4), and Didier Mourenas (5)

(1) Space Sciences Laboratory, University of California, Berkeley, California 94720, USA, (2) Taras Shevchenko National University of Kyiv, Astronomy and Space Physics Department, Kyiv, Ukraine, (3) Space Research Institute, RAS, Moscow, Russia, (4) LPC2E/CNRS - University of Orleans, Orleans, France, (5) CEA, DAM, DIF, Arpajon, France

Modeling of wave-particle interactions requires the detailed information on wave amplitudes and wave-normal distribution over L-shells, magnetic latitudes, magnetic local times of different geomagnetic activity conditions. In this work, we develop a statistical parametrical model of VLF emission amplitudes, obliqueness, spectral power distribution using wave measurements in a chorus frequency range for ten years (2001-2010) aboard the Cluster spacecraft. We used data from the STAFF-SA experiment, which spans the frequency range from 8.8 Hz to 3.56 kHz. The proposed statistical model is presented in a form of the function of the normalized wave frequency f/f_{ce} , the magnetic local time, L-shell, magnetic latitude, and the Dst-index values. It can be directly applied for numerical calculations of the charged particles diffusion coefficients statistical properties in the radiation belts.