

Atmosphere-ocean gas exchange based on radiocarbon data

Alexey Byalko

Landau Institute for Theoretical Physics, Astrophysics & Cosmology, Moscow, Russian Federation (alexey@byalko.ru, 0074992469287)

In recent decades, the intensity of global atmospheric convection has accelerated faster than climate warming; it is possible to judge this process from indirect data. Increasing ocean salinity contrasts provide evidence that evaporation has intensified [1]; sea surface wind velocities and wave heights have increased [2]. The CO₂ gas exchange between the atmosphere and ocean must also simultaneously increase. Monthly measurements of atmospheric CO₂ concentration have been published since 1958 [3], but directly measuring its fluxes from the atmosphere to the ocean and back is hardly possible. We show they can be reconstructed from ¹⁴C isotope concentration data. In the past century, two processes influenced the atmospheric ¹⁴C concentration in opposite directions: burning fossil fuels and testing nuclear weapons in the atmosphere. We compare the gas exchange theory with measurements of radiocarbon content in the atmosphere [4—6], which allows assessing the gas exchange quantitatively for the ocean to atmosphere and atmosphere to ocean fluxes separately for period 1960—2010 [7].

References

1. Durack P. J. and Wijffels S. E., *J. Climate* 23, 4342 (2010).
2. Young I. R., Sieger S., and Babanin A.V., *Science* 332, 451 (2011).
3. NOAA Earth System Research Laboratory Data: ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt.
4. Nydal R., Lövseth K. // *J. Geophys. Res.* 1983. V. 88. P. 3579.
5. Levin I., Kromer B. // *Radiocarbon*. 1997. V. 39. P. 205.
6. Miller J.B., Lehman S.J., Montzka S.A., et al. // *J. Geophys. Res.* 2012. V. 117. D08302.
7. Byalko A.V. *Doklady Physics*, 2013. V. 58, 267–271.