

Weather Regimes and cyclonic activity in the North Atlantic European region: present and future climates

Tiago Rodrigues (1), Alfredo Rocha (1), Paulo Melo-Gonçalves (1), João A. Santos (2), Joaquim G. Pinto (3,4)

(1) Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal, (2)

CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta dos Prados, 5001-801 Vila Real, Portugal

(jsantos@utad.pt), (3) Department of Meteorology, University of Reading, UK, (4) Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Damages associated with extratropical storms are amongst the most important natural hazards on Western Europe. Thus, in this work we analyse: (i) the relationships between several cyclone characteristics: intensity, depth, radius, cyclogenesis, cyclolysis, and total number of cyclones (identified by applying the Murray and Simmonds method to 6-hourly 850 hPa geopotential height); (ii) their links to four large-scale weather regimes (WRs) over a North Atlantic-European sector (NAE, 90W-30E, 20N-80N); and (iii) the projected changes for future climates under emission scenarios. Four WRs are identified by a 4-means clustering of the daily 500 hPa geopotential height fields (Blocking, Zonal or NAO+, Atlantic Ridge, and Greenland Anticyclonic). Furthermore, daily 500 hPa geopotential height from four CMIP3 simulations are clustered using the ERA centroids, for both the recent-past climate (1961-1990) and two future climates: 2021-2050 and 2069-2098. The impact of anthropogenic forcing on the cyclonic activity over the NAE sector is thereby quantified for each of the four weather regimes. Acknowledgments: this work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project CLIPE (PTDC/AAC-CLI/111733/2009).