New age data and geothermobarometric estimates from the Apuseni Mountains (Romania); evidence for Cretaceous amphibolite-facies metamorphism

Martin Reiser (1), Ralf Schuster (2), Richard Spikings (3), Peter Tropper (4), and Bernhard Fügenschuh (1)

(1) Institute of Geology, University of Innsbruck, Austria, (2) Geological Survey of Austria, Vienna, Austria, (3) Department of Mineralogy, University of Geneva, Switzerland, (4) Institute for Mineralogy and Petrology, University of Innsbruck, Austria

New Ar-Ar ms, Rb-Sr bt and Sm-Nd grt age data in combination with microprobe analyses and structural data from the Apuseni Mountains provide new constraints for the tectonic evolution of the Tisza and Dacia Mega-Units during the Late Jurassic-Late Cretaceous time interval, which is of special importance for the present day arrangement of tectonic units in the Alpine-Carpathian-Dinaridic region.

Late Jurassic obduction of Transylvanian Ophiolites (155 Ma) partially reset Ar-Ar ms ages at the top of the Biharia Nappe System in the Dacia Mega-Unit. New Sm-Nd grt ages and P-T estimates yielded amphibolite-facies conditions of 500°C and about 0.8 GPa during the Early Cretaceous (125 Ma Sm-Nd age) for the Dacia Mega-Unit and during late Early Cretaceous times (104 Ma Sm-Nd age) for the Tisza Mega-Unit. This implies that not only the Dacia Mega-Unit, but also the Tisza Mega-Unit experienced a strong regional metamorphic overprint accompanying Alpine deformation.

New 95 Ma Ar-Ar ms and 81 Ma Rb-Sr bt ages from the Bihor Nappe (Tisza Mega-Unit), in combination with fission track ages constrain rapid cooling of more than 20°C/Ma after the thermal maximum. The amplitude of cooling corresponds to data from the Dacia Mega-Unit, which started cooling 20 Ma earlier, but at a rate of only about 12°C/Ma.

Kinematic indicators and stretching lineations show NE-directed, in-sequence nappe stacking for the Tisza and Dacia Mega-Units during "Austrian Phase" deformation (125-100 Ma). Following the Austrian Phase, the Dacia Mega-Unit was thrust over the Tisza Mega-Unit during the Turonian Phase (93-89 Ma). Constrained through NW-directed kinematic indicators and 94-80 Ma Rb-Sr bt ages, this tectonic phase is responsible for a pervasive retrograde greenschist-facies overprint and the geometry of the present-day nappe stack in the Apuseni Mountains.