Geophysical Research Abstracts Vol. 16, EGU2014-3826-1, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.



## **Advanced Simulation of Coupled Earthquake and Tsunami Events** (ASCETE) - Latest Simulation Techniques for Tsunami Process Studies

Joern Behrens (1), Michael Bader (2), Alexander N. Breuer (2), Luis A. Dalguer (3), Alice-A. Gabriel (4), Percy E. Galvez Barron (3), Christian Pelties (4), Kaveh Rahnema (2), and Stefan Vater (1)

(1) University of Hamburg, KlimaCampus, Numerical Methods in Geosciences, Hamburg, Germany, (2) Technische Universität München, Institut für Informatik, Garching, Germany, (3) ETH Zürich, Swiss Seismological Service, Zurich, Switzerland, (4) Ludwig-Maximilians-Universität München, Department of Earth and Environmental Sciences, Geophysics, Munich, Germany

The ASCETE project develops a simulation framework for coupled physics-based rupture generation with tsunami propagation and inundation. Recently, several new results could be achieved.

Adaptive mesh tsunami propagation and inundation by discontinuous Galerkin Runge-Kutta methods allows for accurate and conservative inundation schemes. The adaptive mesh refinement allows for efficiency optimization, since computations are only performed in areas of interest and wave activity. A tree-based refinement strategy is utilized to highly optimize the code for high-performance computing architectures.

Rupture simulation is performed by an unstructured tetrahedral discontinuous Galerking ADER discretization, which allows for accurate representation of complex geometries. Advanced meshing methods allow for near-realistic geometrical set-ups. Currently physically consistent state of stress and frictional strength properties inspired from seismo-thermo-mechanical models are implemented, opening the path to cutting edge process studies of earthquakes in megathrust and off-megathrust faulting systems. Code optimizations with automatic code generation tools for vector performance show gains in execution time of a factor of five and more.

First results of coupled simulations with complex time-dependent rupture mechanics and correspondingly triggered tsunami events demonstrate the potential for novel process studies and uncertainty assessment of realistic events.