Geophysical Research Abstracts Vol. 18, EGU2016-1652-3, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

 ∂E

Goetz Roller

Institute for Nuclear Planetology, Geo- and Cosmochronometry, Munich, Germany (goetz.roller@gmail.com)

Nuclear planetology is a new research field, tightly constrained by a coupled ¹⁸⁷Re-²³²Th-²³⁸U systematics, which by means of nuclear astrophysics aims also at understanding the thermal evolution of Earth-like planets after Mercury-like contraction and Fermi-pressure controlled gravitational collapse events towards the end of their cooling period [1]. In nuclear planetology, Earth-like planets are regarded as old (redshift z > 15), down-cooled and differentiated black dwarfs (Fe-C BLD's), so-called interlopers from the Galactic bulge [1], which are subjected to endoergic 56 Fe(γ, α) 52 Cr (etc.) reactions (photodisintegration), (γ ,n) or (γ ,p) and fusion reactions like $^{12}C(\alpha,\gamma)^{16}O$. It has recently been pointed out [1] that beside its surface temperature T_{eff} of its outer core surface, the Earth shows also striking similarity in volume V (radius r_{Earth} \approx 6.370 km) with an old white dwarf star (WD; $r_{WD} \approx 6.300$ km) like WD0346+246. This major boundary condition for nuclear planetology can be described in terms of $V_{Earth} = V_{WD} = V_{const} = 4 \cdot \pi \cdot r^3 / 3 (r_{WD} \approx r_{Earth})$. However, in addition to the fact that Earth is habitable, the most obvious difference between a WD and the Earth is their density ρ ($\rho = m/V$; m mass, V volume): while a WD may contain $1M_O(M_O = \text{solar mass})$ per V_{const} , the mass of the Earth is only a tiny fraction of this, $\approx 3 \cdot 10^{-6}$ M_O per V_{const} . Therefore, it is crucial to understand $\partial \rho$, or why $m_{Earth} \ll m_{WD}$ for V_{const} . Here I argue that the application of principles constrained by the theory of relativity [2] may offer a possible answer to this question: it is generally accepted that mass is directly related to energy, $E=m \cdot c^2$ (E energy; m mass; c velocity of light) or $m = E/c^2$. From $m \sim E$ we derive that any mass change can be described in terms of energy change [3]. Instead of $\rho = m/V$ we may thus write $\rho = E/c^2 \cdot V$, and because of the special scenario $V_{Earth} = V_{WD} = V_{const}$ discussed here, the denominator of this equation becomes a constant term $C = c^2 \cdot V_{const} = 9.73 \cdot 10^{37} \text{m}^5 \text{s}^{-2}$. From this it follows, that $\rho = E/C$, or $\rho \cdot C = E$. Therefore, we arrive at $\rho \sim E$ for the WD/FeC-BLD case or, considering the evolution of the system over time $t: \partial \rho / \partial t \sim \partial E / \partial t$. Hence, concerning time integrated planetary evolution it may be concluded that any density change $\partial \rho$ of an old stellar remnant towards a $\approx 3 \cdot 10^{-6}$ M_Q habitable Earth-like planet is a measure for the system's energy change ∂E .

[1] Roller (2016), Geophys. Res. Abstr. 18, EGU2016-291-3. [2] Einstein (1905), Annalen d. Physik, 18, 639-641.