Validation of the MUFITS reservoir simulator against standard industrial simulation tools for CO\textsubscript{2} storage at the Ketzin pilot site

Andrey Afanasyev (1), Thomas Kempka (2), Michael Kühn (2), and Oleg Melnik (1)
(1) Institute of Mechanics, Moscow State University, Moscow, Russian Federation, (2) GFZ German Research Centre for Geosciences, Section 3.4 – Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany

We give an overview of the reservoir simulator MUFITS capabilities for modelling underground carbon dioxide storage using the EOS-modules GASSTORE and BLACKOIL. The GASSTORE module covers three-phase solid-liquid-gas flows of water, carbon dioxide and salt components. The extended black-oil model is utilized in the BLACKOIL module, which can be applied in the CO\textsubscript{2} storage scenarios to two-phase flows of CO\textsubscript{2} and brine components. The modules allow comprehensive options including salt precipitation/dissolution, thermal processes, multiple properties regions, and complicated initial vertical equilibration. The PVT tables for the BLACKOIL module can be generated automatically from the GASSTORE module for a given reservoir temperature and brine salinity. We test the simulator against published benchmarking studies.

We then consider an application case of CO\textsubscript{2} storage at the Ketzin pilot site in Germany. For that purpose, we use a calibrated 3D geological reservoir model comprising a highly heterogeneous distribution of porosity and permeability in a fluvial geological setting. The simulation is conducted using the EOS-module BLACKOIL and the modelling results are in excellent agreement with the results of the industrial simulators applied in previous benchmarks. In particular, the bottom-hole pressure in the injection well, the total mass of dissolved CO\textsubscript{2} and spatial CO\textsubscript{2} distribution are identical with previously published results.