
Geophysical Research Abstracts
Vol. 19, EGU2017-7790, 2017
EGU General Assembly 2017
© Author(s) 2017. CC Attribution 3.0 License.

Accelerating 3D Elastic Wave Equations on Knights Landing based Intel
Xeon Phi processors
Mohammed Sourouri and Espen Birger Raknes
Norwegian University of Science and Technology (NTNU), Trondheim, Norway (mohammed.sourouri@iet.ntnu.no,
espen.raknes@ntnu.no)

In advanced imaging methods like reverse-time migration (RTM) and full waveform inversion (FWI) the elastic
wave equation (EWE) is numerically solved many times to create the seismic image or the elastic parameter model
update. Thus, it is essential to optimize the solution time for solving the EWE as this will have a major impact on the
total computational cost in running RTM or FWI. From a computational point of view applications implementing
EWEs are associated with two major challenges. The first challenge is the amount of memory-bound computations
involved, while the second challenge is the execution of such computations over very large datasets.

So far, multi-core processors have not been able to tackle these two challenges, which eventually led to the adoption
of accelerators such as Graphics Processing Units (GPUs). Compared to conventional CPUs, GPUs are densely
populated with many floating-point units and fast memory, a type of architecture that has proven to map well to
many scientific computations. Despite its architectural advantages, full-scale adoption of accelerators has yet to
materialize. First, accelerators require a significant programming effort imposed by programming models such as
CUDA or OpenCL. Second, accelerators come with a limited amount of memory, which also require explicit data
transfers between the CPU and the accelerator over the slow PCI bus.

The second generation of the Xeon Phi processor based on the Knights Landing (KNL) architecture, promises
the computational capabilities of an accelerator but require the same programming effort as traditional multi-core
processors. The high computational performance is realized through many integrated cores (number of cores and
tiles and memory varies with the model) organized in tiles that are connected via a 2D mesh based interconnect.
In contrary to accelerators, KNL is a self-hosted system, meaning explicit data transfers over the PCI bus are no
longer required. However, like most accelerators, KNL sports a memory subsystem consisting of low-level caches
and 16GB of high-bandwidth MCDRAM memory. For capacity computing, up to 400GB of conventional DDR4
memory is provided. Such a strict hierarchical memory layout means that data locality is imperative if the true
potential of this product is to be harnessed.

In this work, we study a series of optimizations specifically targeting KNL for our EWE based application to reduce
the time-to-solution time for the following 3D model sizes in grid points: 1283, 2563 and 5123. We compare the
results with an optimized version for multi-core CPUs running on a dual-socket Xeon E5 2680v3 system using
OpenMP. Our initial naive implementation on the KNL is roughly 20% faster than the multi-core version, but
by using only one thread per core and careful memory placement using the memkind library, we could achieve
higher speedups. Additionally, by using the MCDRAM as cache for problem sizes that are smaller than 16 GB
further performance improvements were unlocked. Depending on the problem size, our overall results indicate that
the KNL based system is approximately 2.2x faster than the 24-core Xeon E5 2680v3 system, with only modest
changes to the code.


