European Mineralogical Conference Vol. 1, EMC2012-586, 2012 European Mineralogical Conference 2012 © Author(s) 2012

Global long-term mean triple oxygen isotope composition of tropospheric \mathbf{CO}_2

M. Hofmann, B. Horváth, and A. Pack

Georg-August-Universität, Göttingen, Germany (magdalena.hofmann@geo.uni-goettingen.de)

Introduction: The oxygen and carbon isotope composition ($^{18}\text{O}/^{16}\text{O}$ and $^{13}\text{C}/^{12}\text{C}$) of tropospheric CO₂ is an excellent tool to investigate the atmospheric CO₂ cycle. Hoag et al. [1] suggested that the triple oxygen isotope composition ($^{17}\text{O}/^{16}\text{O}$ and $^{18}\text{O}/^{16}\text{O}$) of tropospheric CO₂ is a potential new tracer for terrestrial gross primary production (GPP). Here, we investigate in detail the global long-term mean triple oxygen isotope composition of tropospheric CO₂ and discuss its sensitivity to the major CO₂ fluxes, in particular GPP and stratospheric CO₂ influx.

Method: We conduct mass balance calculations for both δ^{18} O and $\Delta^{17}O_{TFL}$ of tropospheric CO₂ in order to reconcile the assumptions for $^{18}O/^{16}$ O and $^{17}O/^{16}$ O fractionation of atmospheric CO₂. In doing so, we carefully assign triple oxygen isotope signatures to the main CO₂ sources and sinks. For CO₂-water exchange, we implement the triple oxygen isotope exponent $\theta_{CO2}/\text{water} = 0.522 \pm 0.002$ [2] and we take into account that the main water reservoirs that exchange with atmospheric CO₂ (ocean, soil and leaf water) have a distinct $\Delta^{17}O_{TFL}$ signature [3, 4]. For kinetically fractionated CO₂ sources and sinks we assume that the exponent $\lambda_{kinetic} = 0.509$ [5]. We test the sensitivity to the main carbon fluxes and fractionation processes by carrying out a Monte Carlo simulation. We also compare the mass balance calculations to the long-term mean triple oxygen isotope composition of ambient air sampled in Göttingen (NW Germany) and with samples from remote locations. The triple oxygen isotope composition of these CO₂ samples was analyzed using a CO₂-CeO₂ equilibration technique published previously [2, 6]. All triple oxygen isotope data are reported relative to the terrestrial fractionation line (TFL) with a slope $\lambda_{TFL} = 0.5251$ and zero intercept.

Results: For our base scenario, we calculate a global triple oxygen isotope composition of tropospheric CO₂ with $\delta^{18} O_{VSMOW} = 41.3\%$ and $\Delta^{17} O_{TFL} = -0.12\%$ Åmbient air CO₂ from Göttingen has a long-term mean triple oxygen isotope composition with $\delta^{18} O_{VSMOW} = 41.5 \pm 0.9\%$ (SD) and $\Delta^{17} O_{TFL} = -0.12 \pm 0.06\%$ (SD).

Discussion: Several studies on $\delta^{18}O$ of atmospheric CO_2 demonstrated that assimilation and respiration are the two opponents controlling the global mean $\delta^{18}O$ of tropospheric CO_2 [7-10]. Here, we show that assimilation is the main driver that tends to decrease the $\Delta^{17}O_{TFL}$ of tropospheric CO_2 whereas both soil respiration and stratospheric influx are the main drivers that tend to increase the $\Delta^{17}O_{TFL}$ value. The model output for our base scenario is in excellent agreement with the long-term mean triple oxygen isotope composition of ambient air from Göttingen. The sensitivity tests show that $\Delta^{17}O_{TFL}$ of tropospheric CO_2 is slightly sensitive to changes in GPP and stratospheric CO_2 influx, and thus, has the potential to complement $\delta^{18}O$ modeling of atmospheric CO_2 .

References:

- [1] Hoag, K.J., et al., Geophys. Res. Lett., 2005. 32(L02802): p. 1-5.
- [2] Hofmann, M.E.G., B. Horváth, and A. Pack, Earth Planet. Sci. Lett., 2012. 319-320: p. 159-164.
- [3] Landais, A., et al., Geochim. Cosmochim. Acta, 2006. **70**(16): p. 4105-4115.
- [4] Luz, B. and E. Barkan, Geochim. Cosmochim. Acta, 2010. 74(22): p. 6276-6286.
- [5] Young, E.D., A. Galy, and H. Nagahara, Geochim. Cosmochim. Acta, 2002. 66(6): p. 1095-1104.
- [6] Hofmann, M.E.G. and A. Pack, Anal. Chem., 2010. 82: p. 4357-4361.
- [7] Ciais, P., et al., J. Geophys. Res., 1997. 102(D5): p. 5857-5872.
- [8] Peylin, P., et al., Phys. Chem. Earth, 1996. 21(5-6): p. 463-469.
- [9] Cuntz, M., et al., J. Geophys. Res., 2003. 108(D17): p. ACH1-ACH23.
- [10] Cuntz, M., et al., J. Geophys. Res., 2003. 108(D17): p. ACH2.1-ACH2.19.