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Abstract

We introduce a fast and fully automatic reconstruction
pipeline for dense 3D model generation from images
acquired on the Mars. Its performance is demonstrated
on 9 images captured by the Phoenix Mars Lander.

Introduction

The growing amount of available imagery from the
Mars acquired recently by landers and rovers makes
the manual image processing techniques used [1] no
longer feasible. We introduce a fully automatic recon-
struction pipeline for dense 3D model generation using
only images themselves and the internal camera cali-
bration as the input. The resulting 3D model can be
viewed from an arbitrary viewpoint bringing the user
a realistic impression similar to “being in there”.

The Pipeline

We demonstrate the performance of our pipeline on
data set PHOENIX which consists of 9 images cap-
tured by the Phoenix Mars Lander just after perform-
ing some digging operation on the Mars surface. The
internal camera calibration is obtained from the pa-
rameters of the CAHVOR camera model [2] present
in the image header.

Determining Image Order

First, we use the image similarity scores to sort the in-
put images into a sequence. Up to thousands of SURF
features [3] are detected and described on each of the
input images and quantized into visual words accord-
ing to a visual vocabulary trained on images from the
Mars using FLANN [4]. Next, term frequency—inverse
document frequency (tf-idf) vectors [5] are computed
for each image with more than 50 detected features
and finally, pairwise image similarity matrix S7; con-
taining cosines of angles between normalized tf-idf
vectors t,, t, of images I,, I, is computed as

S[](a,b):ta‘tb. (1)

{havleml, torii, jancom1, pajdla} @cmp.felk.cvut.cz

Starting from an arbitrary image, the following im-
age is selected as such having the highest similarity
score with the previously selected image among the
images that have not been selected yet.

Structure-from-Motion Computation

Structure-from-Motion computation recovers the un-
known camera poses. First, relative camera poses be-
tween consecutive cameras in the sequence are ob-
tained. Different affine covariant feature regions in-
cluding MSER [6] and SURF [3] are detected in in-
put images. The detected regions are assigned local
affine frames (LAF) [7] and described by discrete co-
sine descriptors [8]. Secondly, tentative feature re-
gion matches are constructed from mutually closest
descriptors in the feature space using FLANN [4] per-
forming the fast approximate nearest neighbour search
based on a hierarchical k-means tree. The 5-point min-
imal relative pose problem for calibrated cameras [9]
is used for generating the camera pose hypotheses and
PROSAC [10], an ordered variant of RANSAC, to-
gether with voting similar to that used in [11] is used
to find the largest subset of the set of tentative matches
that is geometrically consistent. Finally, inliers of the
geometry test are triangulated into 3D points [12]. Rel-
ative camera poses are chained through the sequence
resulting in the absolute poses of all cameras.

Dense 3D Model Generation

Knowing the camera poses, we can reconstruct a dense
3D model of the captured scene. We use a Scalable
Multi-View Stereo pipeline working with an unordered
set of images and corresponding camera poses [13].
The pipeline follows the reconstruction paradigm
used in work [14], which can deal with large video
sequences working with a few neighbouring frames
of each actual frame to compute and fuse the depth
maps. We build upon the work of [15]. In particular,
we modify the reconstruction process to be scalable by
accumulating reconstructed scene and avoiding unnec-
essary computations and improve the filtering step by
using MRF filtering formulation [16]. Three different
views of the resulting model are shown in Figure 1.
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Figure 1: Mars surface reconstruction (PHOENIX
data set). Different views of the resulting 3D model
without texture (left) and covered by the texture taken
from the input images (right). Computed camera poses
are denoted by green pyramids.

Conclusions

We introduced a pipeline suitable for a fully automatic
reconstruction of Mars artifacts and presented its per-
formance on images acquired by the Phoenix Mars
Lander. As the overall computation time on a standard
Core2Quad PC was around 3 minutes, our method of-
fers a significant speedup compared to manual tech-
niques currently used.
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