Northern and southern seepages on Mars and their astrobiological consequences
A. Keresztrui (1), Sz. Berczi (1,2), A. Horváth (1,3), T. Pocs (1,4), A. Sik (1,2), E. Szathmáry (1)
(1) Collegium Budapest, Institute for Advanced Study, (2) Eötvös Loránd University of Sciences (3) Konkoly
Observatory, (4) Eszterházy Károly College

Introduction
Behaviour of the annual frost on Mars points to the characteristics of climate and soil type [1, 2, 3] and
to the presence of water ice [4, 5, 6] and even the possibility of ephemeral melting [7]. In our
previous works [8, 9] we showed that on both hemispheres of Mars seepage-like features are
present at high latitude, which could be the result of interfacial water [10] driven seepages. Here we
compare southern and northern ones.

Methods
Our group analysed the Martian polar dunes and seepage-like features on MGS MOC, MEX HRSC
and MRO HiRISE images. Topographic data were acquired from MGS MOLA and MEX HRSC
DTMs, and temperature data from MGS TES observations.

Discussion
The seepage-like features on the southern [8, 11, 12] and northern [13, 14] (Fig. 1.) dunes of the
polar region show characteristic branching morphology, somewhere pond-like accumulating
feature at their lower end. They possibly formed by the action of interfacial water [15, 16] as we
have shown recently [17]. To gain more information on the astrobiology potential of these
dunes, we started a detailed comparison of the seepages at the northern and southern
hemispheres. It is known, that the atmospheric water vapour content is higher, and the maximal
daytime temperature is lower at north. At north a continuous water ice layer is present in the lower
part of the seasonal cap [18, 19, 20, 21], while at south only patches were found [22, 23, 24]. We
observed the following similarities and differences between the seepage-features at south versus
north:

Seepage-features
- are present on relatively steep slopes of dunes,
- follow the small-scale dune ripples during their movement,
- the average growth speed is 0.6-2.0 m/sol,
- although at north there are higher values,
- during the movement of seepages the average temperature on 3 km scale is lower at north (160-
180 K) than at south (160-220),
- re-brightening was observed at north probably by re-condensation during the movement of seepages,
- after a certain Ls value seepage features appear all along the steep slopes at north, while no similar
phenomena was observed at south,
- there is no correlation between the temperature and the flow speed of seepages,
- more ponds are present at south, although this may arise form the difference in the dune
topography,
- are in contact with spiders in some places at south, but spiders were not found at north.

Sequence of seepage changes
Based on our observations the seepage features and their source spots show the following changes
as the season passes by:
1. emergence of a Dark Dune Spot at the top of the
dune’s slope with wind-blown structures,
2. start of seepages from spots, and at north the
emergence of a bright elevated ring at the spot,
3. growth of seepages in downward direction,
while the slope’s upper section may become bright
again with some refreezing process,
4. at north the upper section of slope may darken
with the appearance of many seepage features,

It is difficult to elucidate, if did observable
movement happen on the dune material during the
movement or did not. The resolution is still not
enough, and there can be overlapping structures
with different ages. Based on the detailed analysis
of HiRISE images, after the total disappearance of
the frost at some locations the dark seepage
features disappear. Probably the previously moved
dark grains rolled into the trenches of the bright
polygonal terrain surrounding the dunes.

Based on model computations [25] interfacial
water and salts are present on Mars, which help
the formation of liquid water. Observations show
water ice lags behind the receding seasonal cap,
the growing seepages together with theoretical
background suggest interfacial water is present on
the observed spots. Therefore in the images of this
paper liquid water lubricated mass wasting of dune grains, or the seep of liquid water is probable.

There are various signs of ice and even melt water related features on dunes [26, 27]. Even when frost cover does not cover the surface any more, physically bond ice is still present inside the dunes [28] or present in the shallow subsurface kept there by chemical bonds too [29] H$_2$O ice may serve as source of H$_2$O molecules to diffuse outward from the dunes’ interior.

The possibility of liquid water on Mars is of high importance regarding its astrobiological consequences, as we analysed in detail previously [11, 30, 31], and it is possible, that interfacial water can be used by microorganisms [32].

Conclusions for astrobiology

Based on our recent work, shallow subsurface micro-environments are ideal for possible living organisms on Mars, because of the UV shielding, and available H$_2$O. During the movement of seepages the temperatures were between 160-180 K at north, and 160-220 K at south on 3 km spatial resolution. The spots and seepages are probably warmer at north and at south also than their surroundings.

Our results show that water activity is high for water uptake in the case of a hypothetical microorganism during nighttime. Temperature for metabolism may be good daytime. The best period where these two factors overlap are morning hours or around noon, if the pore spaces are densely packed to slow down the diffusion of H$_2$O out from the shallow subsurface. In principle the outward diffusing water vapour may also be useful for hypothetical microorganisms [11, 31, 33].

Acknowledgment

This work was supported by the ESA ECS-project No. 98076.

References

Fig. 1. Changes of a large spot and seepage-features emanate from it at 85N 1E on HiRISE images no. 7043, 7531, 7676, 7887, 8032 & 8230, acquired at Ls=23.4, 40.8, 45.8, 53.1, 58.1, 64.9 respectively. The higher part of the terrain is to the right and the slope is tilted to the left. Different phases are visible: a) wind blown streaks, b) bright and dark ring formation, d) first seepages, f) seepages all along the slopes' top edge.