Ice volcanism on Enceladus: From simulations to observations

P. Strub (1), S. Kempf (1), U. Beckmann (1), J. Schmidt (2)

(1) Max-Planck-Institut für Kernphysik, Heidelberg, Germany (Peter.Strub@mpi-hd.mpg.de) (2) Universität Potsdam, Potsdam, Germany

Abstract

Cassini observations of Saturn’s diffuse E-ring and the moons embedded in it have revealed a complex ice volcanism near Enceladus’ south pole. It turned out to be an important source of particles feeding the E-Ring. In order to understand the complex interplay between the plumes and the E-ring structure, we have simulated the lifecycle of particles injected by the ice volcanoes on Enceladus and their propagation in the Saturnian system. Here we present simulated optical/infrared images and spectra derived from the simulations using a Mie scattering model. Comparison with spectral data allows us to constrain the size distribution of the particles, which is a crucial constraint to the process of particle formation.

References