Study of topographic effects on the main Martian ionospheric peak with the Mars Express MARSIS instrument

B. Sánchez – Cano (1,2), O. Witasse (3), M. Herraiz (1,2), S. M. Radicella (4) and G. Rodríguez – Caderot (5).

Abstract
Active Ionospheric Sounding data (AIS) of MARSIS instrument on board Mars Express mission have been used to analyze the effect of the irregular Martian topography on the electron density and altitude of the main ionospheric peak.

1. Introduction
Several parameters such as heliocentric distance, solar activity, or zenith angle must be considered of necessity when the Martian ionosphere is analyzed. However, there are many other factors that have an influence on the ionosphere. One of them is the topography of Mars which is abrupt enough to generate a significant impact on the surrounding plasma.

The most important characteristic of the Mars topography is certainly the dichotomy, a sharp contrast that splits up the planet by the equator, leaving the southern hemisphere about 5 km higher than the northern one. The contrast between both hemispheres is stronger if we consider the presence of volcanic provinces and some deep basins that occupy a large region of the surface in the southern hemisphere. Example of these main topographic accidents, respectively are the volcanic province Tharsis, which includes the highest volcanoes in the solar system, about 21 km in altitude, and Hellas basin, about -5 km (where zero elevation is defined as the equipotential surface whose average value at the equator is equal to the mean radius [1]). As it will be discussed in this paper, this rough topography affects the electron density of the main peak of the Martian ionosphere and its variation in altitude.

2. Methodology
The peak characteristics (altitude and electron density) of the measurements taken by the MARSIS instrument are calculated with respect to the reference surface, that is, the Mars ellipsoid. So it means that no reference to the actual surface elevation is being used in general [2]. It means that a variation in the ionosphere due to this parameter is real and must be considered when the ionosphere is studied and modeled.

The coupling between the topography and the ionosphere has been studied under different conditions (topographic accidents, MARSIS orbits...). Since the only ionospheric parameter which varies along one orbit is the solar zenith angle, to avoid misleading results, every AIS ionogram has been normalized to the same solar zenith angle (χ=0°) using the equations of the NeMars empirical model [3]. The topographic information for the Mars Express orbits comes from MOLA [1].

In a first approximation and taking into account the reference system of the instrument, if the atmosphere were circular, no differences in the altitude measures between both hemispheres would be expected. However, it has been observed that the altitude of the main peak in the ionosphere of Mars in the regions in the south of the dichotomy is higher.
than in the north of the dichotomy as if would follow
the shape of the planet. The same trend can be seen
in most prominent topographic features studied in
this work.

This result is consistent with a previous work [4],
where using radio-occultation data from Mariner 9
and Mars Global Surveyor spacecraft, similar effects
were observed.

3. Summary and Conclusions

The present study describes the variation of the peak
characteristics (altitude and electron density) of the
main dayside layer of Mars ionosphere with the
planetary topography using Mars Express MARSIS
data. After applying a correction with the solar zenith
angle, the main ionospheric peak is well correlated
with different surface features, which is important to
be considered when this atmospheric layer is
modelling.

Acknowledgements

This study is being carried out in the frame work of
Project: Participación científica en la misión a Marte
MEIGA - METNET PRECURSOR, funded by the
Spanish Ministry of Economía y Competitividad
(AYA2011-29967-C05-02) with a Predoctoral
Complutense Grant.

The MARSIS data have been retrieved from the ESA
science archive.

References

[1] Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B.,
Head, J.W., Muhleman, D.O., Pettengill, G.H., Phillips,
R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., Duxbury,
T.C., Golombek, M.P., Lemome, F.G., Neumann, G.A.,
Rowlands, D.D., Aharonson, O., Ford, P.G., Ivanov, A.B.,
McGovern, P.J., Abshire, J.B., Afzal, R.S., Sun, X. Mars
Orbiter Laser Altimeter (MOLA): experiment summary
after the first year of global mapping of Mars. J. Geophys.

[2] MARSIS technical note: Mars Express – MARSIS to
planetary science archive interface control document
(INFOCOM TR 024.005.2003), May 28, 2008.

[3] Sánchez – Cano, B., Radicella, S.M., Herraiz, M.,
Witasse, O., Rodríguez – Caderot, G. NeMars: An
empirical model of the Martian dayside ionosphere based
on Mars Express MARSIS data. (Submitted).

effects on the Martian ionosphere. Planetary and Space