Long-term monitoring of Jupiter’s South Temperate domain: Oval BA and the cyclic development of structured sectors

Abstract

The pattern of atmospheric phenomena in Jupiter’s South Temperate domain, covering the years 2001-2012, is here deduced from amateur images. We summarise the long-term history of the major features, viz. a succession of structured cyclonic sectors of the South Temperate Belt (STB), one of which is coupled to the single large anticyclonic oval (oval BA). The other structured segments begin as small dark spots or streaks remote from oval BA, then expand, and eventually catch up and merge with the dark segment at BA, inducing intense disturbance in and around it. This cycle has been completed three times in 15 years, maintaining at least 2 structured sectors at all times. The major changes in drift rate of oval BA appear to be due to the impacts and subsequent shrinkage of the structured segments. From 2008 onwards, oval BA has been shrinking and shifting southwards.

2. Background

Jupiter’s South Temperate domain, between the jets at 36ºS and 26-29ºS, has always contained notable features, which usually constitute 2 or 3 distinctive sectors widely separated in longitude, suggestive of control by a planetary-scale wave. The nature of these sectors has changed over the decades. Since 2000, there has been just one large anticyclonic oval (called BA), and one or more dark segments of South Temperate Belt (STB), but their development and variations over multiannual timescales have not previously been analysed.

Here we present a long-term overview of the domain covering the years 2001-2012, from amateur images, with a novel synthesis of the behaviour of the major features.

3. STB structured sectors

There are always 2 or 3 structured sectors (e.g. Fig.1). One of them is headed by oval BA at its east end, followed typically by a dark STB segment (segment A), which sometimes contracts to form a small dark cyclonic oval (‘barge’). The other structured sectors are organised only in the cyclonic latitudes: some are dark STB segments, whereas one had very low contrast (the ‘STB Remnant’ in 2005-2010). Dark STB segments show small-scale turbulence, and emit small dark spots eastwards into the prograding STBn jet, and irregular dark streaks in a westwards extension along the retrograding STBs jet. (This activity was most graphically shown in the Cassini movies.)
Figure 2. Longitude vs time for STB structured sectors (labelled A to D), 2000-2012. Grey shadings indicate dark STB segments. Green, oval BA; blue, east end of structured sector; purple, west end; B’, small feature preceding main part of sector B.

Fig.2 shows how 3 structured sectors have successively arisen and expanded, then, drifting faster than segment A, they have caught up and collided with it. Segment B began as a small dark spot in 1998 and became an expanding dark STB segment which collided with segment A in 2003/04. Segment C began as a small dark spot in 2002-2004, but developed into the low-contrast ‘STB Remnant’, probably a cyclonic circulation cell, which collided with segment A in 2010. Both these collisions produced large effects:
--Rapid changes in the region, until the long merged STB segment stabilised again;
--A substantial outbreak of small dark spots prograding on the STBn jetstream p. oval BA;
--Dark spots or streaks spreading in the opposite direction southwest from the merging STB complex.

Segment D began as a small faint streak in 2008, and became an expanding dark STB segment which is colliding with segment A in early 2013. Meanwhile another small dark spot appeared on the opposite side of the planet in 2011, and has become a faint cyclonic streak which seems likely to be the next structured segment. Thus a small cyclonic feature can develop into a new structured sector when there are no other major features over a wide range of longitude, and thus initiate the next cycle.

4. Oval BA

Oval BA sometimes undergoes large changes of drift rate, which appear to be caused by two factors: the cyclic impacts and shrinkages of structured STB segments impinging on its west side, and the periodic passages past the Great Red Spot. Since it formed in 2000, its two major accelerations approximately coincided with the impacts of STB structured segments onto segment A, while its major decelerations approximately coincided with shrinkage of segment A (or part of it) into a small closed ‘barge’ (Fig.2).

From 2008 onwards, oval BA has been shrinking in length and probably in width, which accounts for a progressive southwards shift in its speed-vs-latitude relationship.

5. Discussion: The future of the domain

Since the three long-lived ovals of 1940-2000 have merged to leave just one anticyclonic oval, BA, and oval BA is shrinking in turn, will a new set of large anticyclonic ovals soon arise?

We suggest the following scenario. At present, oval BA is large enough to block the faster drift of the other structured STB segments, and therefore they only last for a few years, not long enough for anticyclonic circulation to develop between them. In the next few years, oval BA will shrink so much that it no longer controls the dynamics of the region, and the other structured STB segments will be free to develop a long-lived pattern of 2 or 3 of them spaced around the domain. Then, within a decade or so, the spaces between them will develop into anticyclonic circulations that will become the next generation of large ovals.