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Abstract

Oxygen-rich deep interiors of the Giant Planets [1]
cannot explain the discovery of water vapor and car-
bon dioxide in the stratospheres of the Giant Planets by
[2] because these species are trapped by condensation
around their tropopause levels (except CO2 in Jupiter
and Saturn). Therefore, several sources in the direct or
far environment of the Giant Planets have been pro-
posed: icy rings and/or satellites [3], interplanetary
dust particles [4] and large comet impacts [5].

Infrared Space Observatory (ISO), Cassini, Odin
and Herschel observations have proven that the Jovian
stratospheric water and carbon dioxide originate from
the Shoemaker-Levy 9 comet impacts in July 1994
[6, 7], while Herschel has recently shown the exter-
nal flux of water at Saturn and Titan is most likely due
to the Enceladus geysers and the water torus they feed
[8, 9].

As for carbon monoxide (CO), the emerging pic-
ture seems to show more uniformity for its sources.
Because CO does not condense at the tropopauses of
Giant Planets, oxygen-rich interiors are a valid source.
An internal component has indeed been observed in
the vertical profile of CO in Jupiter by [10] and in Nep-
tune by [11], while an upper limit has been set on its
magnitude by [12] for Saturn. In addition to interiors,
large comets seem to be the dominant external source
of CO in the Giant Planets, as shown by various stud-
ies: [10] and [13] for Jupiter, [14] for Saturn and [15]
for Neptune.

Despite its first detection almost a decade ago by
[16], the situation has remained unclear for Uranus
ever since. The (sub)millimeter domain with the use
of heterodyne spectroscopy has long been considered

as promising to determine the vertical profile of CO,
and thus its origin, in Uranus (e.g., [17]). However,
attempts made to detect the molecule have failed so
far in this spectral range, leading only to upper limits
[18]. In this paper, we present the first submillimeter
detection of CO in Uranus carried out with the HIFI
instrument [19] onboard the Herschel Space Obser-
vatory [20] in 2011-2012. Using a simple transport
model, we review the various possible sources of CO
(internal and external) and constrain their magnitude.
For instance, we derive an upper limit for the internal
source of CO. And with the thermochemical model of
[21], adapted to the interior of Uranus, we derive an
upper limit on its deep O/H ratio from it.
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