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Background and motivation | The longevity of the
richly-instrumented Cassini mission permitted an ex-
ceptionally detailed characterization, and monitoring
over the changing seasons, of Saturn’s a) latest Great
White Spot! and associated stratospheric warming>3;
b) mid-latitude convective storms* and vortices>?;
c) stable hexagonal polar jet” and central turbulent
polar vortex®; d) equatorial stratospheric oscillation
of temperature, with jets stacked along the vertical,
in Saturn’s stratosphere® with semi-annual periodic-
ity '%; e) possible meridional transport of stratospheric
hydrocarbons '">. Cassini mapping of Jupiter’s and
Saturn’s banded tropospheric jets in the cloud layer
demonstrated the high rate of conversion of en-
ergy from eddies to banded jets'>!'* and detailed the
structure of macroturbulence and vorticity !>!6, which
strongly suggests that large-scale tropospheric banded
jets emerge from forcing by smaller-scale eddies and
waves arising from hydrodynamical instabilities. This
harvest of Cassini observations has been comple-
mented by Earth-based space telescopes !”, which en-
abled to monitor e.g. Jupiter’s “quasi-quadriennal”
equatorial oscillation '8, Inserted in Jupiter’s orbit in
July 2016, the Juno spacecraft is currently acquir-
ing, for the first time, microwave radiometry maps of
water abundance and convective cloud opacity below
Jupiter’s visible cloud level (in the deep troposphere,
at pressures exceeding 100 bars), high-order grav-
ity measurements to infer the depth at which banded
jets extend'®, and high-resolution images of Jupiter’s
Great Red Spot and polar regions. Cassini’s Grand Fi-
nale in 2017 will also perform the latter two measure-
ments for Saturn.

To address the new
questions raised by those recent measurements, we
built a new GCM for gas giants, both versatile and
powerful enough to resolve the eddies arising from hy-
drodynamical instabilities and forcing the planetary-
scale jets, to extend from the troposphere to the strato-
sphere with good enough vertical resolution, and to

A new GCM for gas giants ‘
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Figure 1:  [Top] Tropospheric 1.5-bar zonal wind ob-
tained in the ninth simulated year (Ls = 0°) with our Sat-
urn GCM. [Bottom] Pressure-latitude section of zonal-mean
zonal winds for the same season and Saturn GCM simula-
tion, with zonal-mean temperature contours superimposed.

use optimized radiative transfer to predict seasonal
tendencies over decade-long giant planets’ years. To
that end, we coupled our seasonal radiative model tai-
lored for Saturn®’, and recently adapted to Jupiter as
well?!, with DYNAMICO, the next state-of-the-art dy-
namical core for Earth and planetary climate studies



in our lab, using an original icosahedral mapping of
the planetary sphere which ensures excellent conser-
vation and scalability properties in massively parallel
resources 2.
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Figure 2: The evolution of zonal-mean tropospheric zonal
Jjets from our 10-year-long Saturn GCM simulation.

’ 1/2° Saturn GCM simulations ‘ Our GCM simu-

lations for Saturn reproduce tropospheric mid-latitude
jets bearing similarities with the observed jet system
(numbering, intensity, width, see Figure 1). They also
predict eastward-propagating Rossby-gravity (Yanai)
waves at the equator, and high-wavenumber waves
in mid-latitudes, as well as vortices. In contrast to
observations, in our GCM simulations the equatorial
jet is only weakly super-rotating and the polar jet is
strongly destabilized by meandering. Our model pre-
dicts stacked stratospheric eastward and westward jets,
but raising the model top is needed to address the equa-
torial oscillation. We find that jets are eddy-driven
with a conversion rate from eddies to mean flow in
agreement with Cassini estimates. Before reaching
equilibrium, mid-latitude jets experience poleward mi-
gration (Figure 2), which can be ascribed to a self-
destabilization of the jets by baro-tropic/-clinic insta-
bilities. Our GCM simulations exhibit a stratospheric
meridional circulation from one tropic to the other,
with seasonal reversal, suggesting dynamical control
on the observed variations of hydrocarbons.

Perspectives for Saturn and Jupiter ‘ We also
carried out 1/4° and 1/8° Saturn GCM simulations
with a “test” configuration (sponge layer and high
dissipation). The simulated midlatitude jets’ strengths
are closer to observed values — and a more complete
spectrum of eddies, waves, and vortices is resolved.

Refining the vertical resolution is also considered
as a path forward. Our Saturn GCM is only a first
step towards a GCM system able to simulate all giant
planet environnements: preliminary Jupiter GCM
simulations will be presented to discuss measurements
from JUNO and the (future) JUICE missions.
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