TGO/CaSSIS – First in-orbit observations

N. Thomas(1), A. Pommerol(1), V. Roloff(1), G. Cremonese(2), M. Banaszkiewicz(3), J. Bridges(4), S. Byrne(5), V. da Deppo(6), S. Debei(7), M.R. El-Maarry(18), E. Hauber(8), C.J. Hansen(9), A. Ivanov(10), L. Keszthelyi (11), R. Kirk(11), R. Kuzmin(12), N. Mangold(13), L. Marinangeli(14), W. Markiewicz(15†), M. Massironi(16), A.S. McEwen(5), C. Okubo(11), P. Orleanski(3), P. Wajer(3), J. Wray(17), and R. Ziethe(1*).

(1)Physikalisches Inst., University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland (nicolas.thomas@space.unibe.ch), (2)INAF, National Institute for Astrophysics, Padova, Italy, (3)Space Research Center, Polish Academy of Science, Warsaw, Poland, (4)University of Leicester, Leicester, UK, (5)Lunar and Planetary Laboratory, Tucson AZ, USA, (6)CNR-IFN UOS Padova, Italy, (7)Centro Interdipartimentale di Studi e Attività Spaziali, Padova, Italy, (8)Deutsches Zentrum für Luft- und Raumfahrt, Institut für Planetenforschung, Berlin, Germany, (9)Planetary Science Institute, St. George, Utah, USA, (10)École polytechnique fédérale de Lausanne, Lausanne, Switzerland, (11)USGS, Astrogeology Science Center, Flagstaff AZ, USA, (12)Vernadsky Inst. of Geochemistry and Analytical Chemistry of Russian Academy of Science, Moscow, Russia, (13)Université de Nantes, Nantes, France, (14)RSPS - Università "G.D'Annunzio", Pescara, Italy, (15)Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, (16)Dep.Geosciences, University of Padova, Padova, Italy, (17)Georgia Inst. of Technology, School of Earth and Atmospheric Sciences, Atlanta GA, USA. (18) LASP, University of Colorado in Boulder, Boulder CO-80303, USA. *Now at Micro-Cameras and Space Exploration, Neuchatel, Switzerland.

Abstract

CaSSIS (Colour and Stereo Surface Imaging System) is the main imaging system for the ExoMars Trace Gas Orbiter (TGO) mission. A scientifically compelling instrument was completed in October 2015 and launched in March 2016 [1]. This abstract describes the current status of CaSSIS and provides a first assessment of its in-flight observations.

Observations

The scientific objectives of CaSSIS are to (1) characterize sites which have been identified as potential sources of trace gases, (2) investigate dynamic surface processes (e.g. sublimation, erosional processes, volcanism) which may help to constrain the atmospheric gas inventory, and (3) certify potential future landing sites by characterizing local (down to ~10 m) slopes.

The technical aims foreseen were to (1) acquire imaging observations at a scale of <5 m/px, (2) produce images in 4 broad-band colours optimized for Mars photometry, (3) acquire a swath width >8 km, and (4) obtain quasi-simultaneous stereo pairs over the full swath width for high res. digital terrain models. These technical aims combined with programmatic constraints drove the design. The concept was discussed at EPSC in 2014 [1]. A full instrument description is in review [2]. Details on the on-ground calibration of the instrument are provided in [3]. The full payload is described in [4].

CaSSIS was first switched-on on 7 April 2016 just over 3 weeks after launch and the first images of Mars in the Mars Capture Orbit (MCO) were acquired on 22 November 2016. An example from the first Mars sequence is shown in Figure 1.

Figure 1 The first in-orbit observation of the surface of Mars with CaSSIS. This observation shows the image on the detector through the 4 filters. From the top, we see BLU, NIR, RED and PAN. The timing of the push-frame images could be predicted well from the instrument geometry and the SPICE kernels generated by ESOC and ESAC. The test stereo pairs suggest that CaSSIS will perform stereo observations well [5,6]. Stereo reconstruction has already been performed [7]. Observations of Phobos [8] have been used to assess the photometric accuracy of the instrument and will be the subject of a publication. During the closest approach on 22 Nov. 2016, data at 2.7 m/px of Hebes Chasma was acquired with 700 μs exposure time with high signal to noise. Although the sites of the observations could not be targetted, scientifically interesting data could be acquired. The Hebes Chasma data show abundant slopes streaks and outcrops at high res (Figure 2).
The reconstructed image of Hebes Chasma is 2237 x 9234 pixels in dimension at 2.7 m/px. Only one colour could be obtained in this case because of the very high ground-track velocity resulting from the close periapsis and the highly elliptical orbit of TGO.

During the second test phase (March 2017), an invalid address in the memory caused the camera to re-boot shortly before the first periapsis pass. However, some data were acquired prior to this software error. An example is from Sisyphi Planum (Figure 3) which shows strong contrast.

The hardware appears to be working well. Future observations will test a new flight software version to be uploaded in August which incorporates compression algorithms in preparation for entry into the primary science phase in April 2018.

Acknowledgements

The authors wish to thank the spacecraft and instrument engineering teams for the successful completion of the instrument. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA's PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no.1/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona (Lunar and Planetary Lab.) and NASA are also gratefully acknowledged.

References