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Summary: We propose employing Bayesian calibration to match observed neutron data with calculated moisture
contents. Hereby the calibration effort aims at minimizing the uncertainty regarding the experimental boundary
conditions, after which the model can be interrogated for pressure data. The proposed formulation explicitly accounts for
image noise and model bias. The approach is illustrated for the case of evaporative drying in limestone.

1. INTRODUCTION

Dynamic imaging of fluid flow in porous media is of interest to a wide range of problems, ranging from the integrity
of civil engineering structures, over the storage of CO, or natural gas in underground reservoirs, up to the safe
storage of long-term nuclear waste. Hereby imaging methods can yield quantitative information on the phase
distributions and the local saturation degree. Directly observing pressure is however not possible. Typically these
are inferred based on a suitable model, in which the uncertain model parameters would be calibrated in order for
the results to match the experimental data as closely as possible.

In this contribution we essentially propose a rigorous and automated framework for the calibration procedure,
hereby removing the often laborious efforts to obtain a good fit between model and experiment. The proposed
approach is based on Bayesian inference, and explicitly accounts for possible model bias and random errors, such
as image noise. Furthermore the approach permits estimating uncertainties on the inferred quantities.

2. MODEL CALIBRATION FRAMEWORK

The adopted framework for model calibration is strongly rooted in the work of [1], which by itself is an adaptation
of a framework initially proposed by [2]. In this approach, we assume that n observations y are made of a physical
system ¢ under conditions x;:
y(x;) = {(x;) + e(x;)
where ¢ describes the observation error and i an index ranging from 1 to n. The physical system can be modelled
by means of a suitable simulator 1(x;, @), which generally depends on a number of (physical or non-physical) model
parameters 0. Moreover, the model being an imperfect representation of reality, some bias &§(x;) cannot be
disregarded. The response of the true physical system can thus be replaced by {(x;) = n(x;, 8) + 6(x;), leading to:
y(x) =n(x;, 0) + 6(x;) + e(xy)

or, the observations y correspond to simulations 7 made using model parameters @ after correcting for model bias
6 and observation errors €. The objective of the approach proposed here is to statistically determine the most likely
contribution of each of these terms based on a limited number of observations and simulation runs.

To that extent, each of the terms is represented in a stochastic sense. Observation errors can e.g. be represented
by a Gaussian distribution with mean zero and a yet unknown variance o,. Unlike observation errors, the bias term
is probably not entirely random. Model bias can be considered as an (unknown) function which maps the calculation
results on reality under given conditions. A probability distribution on functions (as opposed to values) is called a
“stochastic process”, and if the distribution is considered Gaussian, we speak of a Gaussian Process (or GP). GPs
are fully described by a mean and a covariance function. Here we make the typical choice to adopt a zero mean and
a squared exponential covariance function (see e.g. [1]). The zero mean is justified if all data are properly normalized
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prior to the calibration procedure. The covariance function is characterized by two (unknown) parameters, a length
scale ls and a magnitude os and is sufficiently flexible to cover a large range of possible functions. Finally, the
numerical model 1 can also be represented by a GP, characterized by a squared exponential covariance function
with length scale [,, and magnitude o,,. The statistical representation of the problem at hand thus adds the unknown
variables g, gs, 0y, s and [, to the sought optimal parameters 6.
The unknown parameters can be determined using Bayes theorem, which reads:
n(B, ¢, T, Oy, Ls, l,7|y) « L(y|0, ¢, Ts, Oy, Ls, l,,) x (0) X n(o,) X w(os) X rt(o’,,) x (ls) X n(ln)

The left hand side term describes the probability distribution for all unknown parameters. This distribution is
proportional to the product of the likelihood L with a number of prior distributions 7. The likelihood simply yields
the probability to obtain a result y with a given combination of parameters. The prior distributions give first
estimates for these parameters. The Bayesian theorem can be explored with well-established iterative techniques
such as Markov Chain Monte Carlo (MCMC). Since a distribution is obtained, we dispose of a quantitative measure
for the uncertainty associated with the model parameters 0 (as well as for the other parameters).

3. APPLICATION TO NEUTRON DATA

The described framework is now employed to determine the unknown evaporative flux at the top surface of a
limestone sample subjected to drying (see [3] for experimental details). Neutron radiographies are taken at given
time intervals and post-processed with QNI [4] (Fig. 1a). Vertical moisture profiles are extracted, averaged over the
middle third of the sample to reduce noise, and constitute the observations y (Fig. 1b, grey). Diffusion simulations
are conducted using a 1D finite element code for 5 transfer coefficients ranging from 107° to 1078 s/m. The MCMC
solution yields a narrow distribution around 3.95 X 10~? s/m. Simulated moisture profiles for this value are shown
in Fig. 1b (black) and corresponding pressure profiles in Fig. 1c. MCMC calibration takes around 150 ms.
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Figure 1: (a) neutron radiography in a limestone sample subjected to drying at t,, (b) measured (grey) and

simulated (black) moisture content profiles for different points in time, and (c) simulated pressure profile.
Simulated profiles in (b) and (c) use the most likely transfer coefficient, as determined from MCMC.



