Forecast of annual temperatures changes in Altai and Northern Mongolia regions for the period 2010-2050 year

A. Darin (1), I. Kalugin (1), M. Maksimov (1), and K. Zolotarev (2)

(1) Institute of geology and mineralogy SB RAS, geology, Novosibirsk, Russian Federation (avd@uiggm.nsc.ru), (2) Budker Institute of nuclear physics SB RAS, Russia, Novosibirsk

The method of scanning X-ray fluorescent analysis using synchrotron radiation [1,2] investigated sediment cores of Lake Teletskoe (Mountain Altai) [3] and lake Telmen (Northern Mongolia) [4].

The method of constructing the forecast includes the following steps:
1) Geochemical analysis of lakes bottom sediment cores with resolution 0.1 mm. It corresponds to the time resolution ~ 0.2-0.3 year (sedimentation rates are equal 0.51 mm/year for Teletskoe Lake and 0.64 mm/year for Telmen Lake).
2) Creating a time series of geochemical indicators of climate change. We used the following geochemical proxies: Ti, Br, Rb, Sr, Mo contents and X-ray density.
3) Calibration transfer functions on the regional meteodata during the last 80-120 years. Regression equation such as: climate parameter = function (proxy) were calculated.
4) Reconstruction of climatic parameters on the depth of the core. Annual temperature and precipitation change for the Altai region (0 - 3000 years ago) and Northern Mongolia region (0 – 2000 years ago) have been reconstructed with step 0.2-0.3 year.
5) A Fourier analysis showed the same frequency of climate change for both regions. Have been identified as the main periods (frequency): 2000, 1000, 660, 500, 400, 330, 270, 200, 155, 125, 105, 80, 45, 30 and 10 years. The sum of 15 sinusoid correlates with the reconstruction of annual temperature in the time period of 1000-2000 years, with the coefficient 0.89.
6) Based on the discovered periodicities forecast the environment change for the period 2010-2050 was calculated. According to our estimates at this time is expected sharp fall of annual regional temperature.

The study was funded by grant 07-05-92103 from the Russian Foundation for Basic Research, by grant 91 from the Siberian Branch of the Russian Academy of Sciences.